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Abstract
In this paper, we consider the effects of strong dipole–dipole interactions on three-level
interference phenomena such as coherent population trapping and electromagnetically induced
transparency. Experiments are performed on laser cooled rubidium atoms and the results
compared to a many-body theory based on either a reduced many-body density matrix
expansion or Monte Carlo simulations of many-body rate equations. We show that these
approaches permit quantitative predictions of the experimentally observed excitation and
transmission spectra. Based on the calculations, we moreover predict a universal scaling of the
nonlinear response of cold Rydberg gases.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Quantum interference in driven multi-level systems gives rise
to a range of remarkable phenomena, being explored in various
different physical settings, ranging from quantum dots and
optical fibres to optomechanical systems and cold atomic gases
[1–9]. In the simple case of a three-level atom coherently
coupled to two laser fields, interference between the two
excitation pathways has profound consequences for the atomic
state evolution as well as for the propagation of the applied
optical fields. This leads to coherent population trapping
(CPT) [10] into a quantum superposition of the atomic states
which is independent of the intermediate level. Hence, the
atom becomes transparent to the laser fields, being referred
to as electromagnetically induced transparency (EIT) [5, 11].

For non-interacting atomic gases, these related effects have
been studied intensively, as they provide a promising basis for
storing [12, 13] and manipulating [14] quantum information
as well as precision spectroscopy [15].

More recently, it has been recognized that the combination
of EIT and highly excited Rydberg states [16] opens up new
perspectives for such applications. Theoretically, strongly
interacting Rydberg atoms driven in an EIT configuration
were shown to enable the generation of non-classical light
[17, 18] and many-atom entanglement [19, 20] and to permit
implementation of photonic phase gates [21] and quantum
simulators for exotic many-body systems [22]. Experiments
have studied the effect of Rydberg–Rydberg atom interactions
on EIT and CPT [23–27]. The experimental demonstration of
a giant Kerr effect [24] based on the exaggerated polarizability
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of Rydberg atoms and huge dissipative optical nonlinearities
[27] due to strong Rydberg–Rydberg atom interactions already
demonstrates the great potential of Rydberg-EIT media for
applications in quantum optics.

To illustrate the physical mechanism of CPT and EIT,
consider first a single three-level atom composed of a ground
state |1〉, a rapidly decaying intermediate state |2〉 and a highly
excited Rydberg state |3〉. Within a ladder configuration,
the states |1〉 and |3〉 are coherently coupled to the common
intermediate state |2〉 and the decay of the Rydberg state |3〉
is negligible slow (cf figure 1). Consequently, on two-photon
resonance, the system evolves into the dark state

|d〉 = 1√
�2

1 + �2
2

(�2 |1〉 − �1 |3〉), (1)

which is not affected by the excitation lasers and is immune to
radiative decay of the intermediate state. Consequently, this
leads to a narrow, subnatural Rydberg excitation line (CPT), as
well as dissipationless propagation of the optical fields (EIT).
This simple picture, however, gets modified already for two
atoms with Rydberg state interactions. Most importantly,
the simultaneous Rydberg excitation of both atoms gets
blocked once the interaction energy exceeds the corresponding
excitation linewidth (see figure 1(b)). As a consequence, this
interaction- or dipole-blockade [28] modifies the two-atom
dark state [19], and thus affects the Rydberg-CPT line as well
as the light transmission on the EIT resonance.

From the dark state (1) we can distinguish two different
cases. If �1 � �2 (case A in figure 1) the majority of atoms
are transferred into Rydberg states, suggesting a dramatic
effect of Rydberg–Rydberg interaction on their excitation
dynamics. In the opposite case (case B in figure 1) most
of the population resides in the ground state, with interaction
effects arising from the small admixture (∼�2

1/�2
2) of Rydberg

states. In this work, we present a combined experimental
and theoretical investigation of the effect of Rydberg state
interactions on CPT and EIT that covers both of these regimes.
In the experiments we work with Rydberg S states since due
to their repulsive interaction, as indicated in figure 1(b), these
atoms are relatively stable against ionizing collisions [29], and
since they do not undergo significant state mixing [30, 31] due
to dipole–dipole coupling to adjacent pair states. Section 3
presents Rydberg excitation spectra for case A, which reveal
an unshifted CPT line despite a strong interaction-induced
suppression of Rydberg excitation. Measurements of the
optical transmission, presented in section 4 for the opposite
case B, demonstrate the emergence of strongly nonlinear
absorption due to Rydberg–Rydberg atom interactions but
an otherwise unshifted transmission line. These findings are
well reproduced by the theoretical calculations, outlined in
section 2, which generally show very good agreement with the
experimental data.

2. Many-body theory

Extending the above single-body discussion, we now consider
a Rydberg gas composed of N interacting three-level atoms
at positions ri . Starting from the underlying Heisenberg

(a)

(c)

(b)

Figure 1. Due to van der Waals interaction the pair energy of two
Rydberg atoms is bent at short interatomic separations (b), which
leads to a suppression of excitation around an already excited
Rydberg atom. (a) In a gas of atoms this gives rise to avoided
volumes in which only one Rydberg atom can be excited, as
indicated by the dashed circles. (c) Depending on the ratio of the
two Rabi frequencies different characters of the dark state can be
realized. In the extreme case of a very small upper Rabi frequency
�2 (case A) the dark state is largely composed of the Rydberg state
whereas for a very small lower Rabi frequency �1 (case B) the dark
state is dominated by the ground state. The corresponding
populations are indicated by the size of the spheres in (c).

equations the dynamics of the corresponding atomic transition
and projection operators σ̂

(i)
αβ = |αi〉〈βi | (α, β = 1, 2, 3)

follows

d
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where �1(2) denote the detunings of the probe and coupling
laser beams and the rate constants γ , γ12 and γ23 account for
spontaneous decay of the intermediate level |2〉 as well as for
finite bandwidths of the applied lasers. Their corresponding
Rabi frequencies �

(i)

1(2) depend on the atomic positions ri

through the respective intensity profiles, i.e. �(i)

1(2) = �1(2)(ri ).
We exclusively consider |3〉 = |nS〉 Rydberg states that
interact via isotropic van der Waals potentials Vij = C6/r6

ij .
In the non-interacting limit Vij = 0, equations (2)

reduce to the standard optical Bloch equations (OBEs)
for independent three-level atoms, thus, leading to EIT
and CPT as discussed above. The presence of Rydberg–
Rydberg atom interactions, however, results in a strongly
correlated many-body dynamics, whose exact description
becomes prohibitively demanding already for moderate atom
numbers N. In the following, we outline two complementary
approximate treatments of (2) that are shown to account for
our experimental findings.

2.1. Reduced density matrix expansion

Aiming at an approximate description of the excitation
dynamics at moderate densities, we consider the time evolution
of the reduced density matrix elements. Using the definitions
ρ

(i)
αβ = 〈

σ̂
(i)
αβ

〉
, ρ

(i,j)

αβ,α′β ′ = 〈
σ̂

(i)
αβ σ̂

(j)

α′β ′
〉
, etc, their time evolution

follows directly from (2). The resulting dynamical equations
for the single-body elements ρ

(i)
αβ involve two-body elements

ρ33,αβ , whose dynamics requires knowledge of three-body
elements, and so on. Consequently, the resulting BBGKY
hierarchy [32] has to be closed in an appropriate way. Here, we
apply a second-order ladder approximation, such that the three-
body interaction terms appearing in the two-body equation are
expressed by [26]

∑
k �=i,j

Vjkρ
(k,i,j)

33,αβ,α′β ′ =
∑
k �=i,j

Vjkρ
(i)
αβρ

(k,j)

33,α′β ′ . (3)

This procedure fully accounts for binary correlations and
approximately includes many-body correlations at small
mutual distances. The resulting O(N2) coupled differential
equations for the single- and two-body density matrices
can be solved numerically and are used to describe our
measurements of CPT dynamics presented in section 3. As
one naturally expects from a density expansion its validity
becomes questionable at high densities. In order to describe
the high-density measurements of section 4, we, therefore,
apply an alternative approach outlined below.

2.2. Monte Carlo rate equation approach

Being primarily interested in the many-body steady states
of equations (2) one can resort to a rate equation treatment
[33–35] whose validity is not restricted by the density of atoms.
For clarity, we start from the non-interacting case, for which

ρ

ρ

Figure 2. Density dependence of the imaginary part of the
probe-transition coherence for a 87Rb 55S Rydberg gas driven with
�1 = 1 MHz and �2 = 2 MHz, with both laser beams chosen to be
resonant and to have a linewidth of 100 kHz. Calculations based on
the RDME (circles) and the MCRE approach (line) are shown for
comparison.

the N-particle density matrix factorizes into single-atom ones(
ρ

(i)
αβ

)
. Upon adiabatic elimination of the coherences in the

corresponding OBEs, the dynamics of the populations follows
a set of rate equations

d

dt

⎛
⎝

ρ
(i)
11

ρ
(i)
22

ρ
(i)
33

⎞
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⎛
⎝
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⎞
⎠

⎛
⎝

ρ
(i)
11

ρ
(i)
22

ρ
(i)
33

⎞
⎠ , (4)

where the rate coefficients aαβ are obtained from the OBEs
as a function of the laser parameters. This single-atom
rate equation description is straightforwardly extended to
interacting atoms by replacing the detuning �1 by �

(i)
1 =

�1 +
∑′

i �=j Vij , which accounts for the van der Waals shift
induced by excited Rydberg atoms. The sum

∑′ runs over all
atoms in state |3〉 such that �(i)

1 , and, hence, the transition rates,
depend on the actual many-body configuration of Rydberg
atoms in the gas. As shown in [34], this replacement
only neglects simultaneous multi-photon excitation of several
Rydberg atoms, which typically can safely be neglected. Note
that the resulting many-body rate equation still covers an
exponentially large number of 3N many-body states. Using a
Monte Carlo propagation scheme [36], it can, however, be
solved efficiently for very large numbers of atoms. This
procedure yields the steady-state diagonal elements of the
entire N-body density matrix. Using the average population
ρ22 = N−1 ∑

i ρ
(i)
22 of the intermediate state together with

equations (2b) and (2c) one can further determine �[ρ12] =
γ

�1
ρ22, which yields the nonlinear absorption of the probe

beam, to be discussed in section 4. In figure 2, we compare
the steady-state value of ρ12 as obtained from the two methods.
Over a wide range of densities there is very good agreement
between these entirely different approaches, providing strong
support for the applied approximations. Expectedly, the
density matrix expansion deviates at higher densities, but
gives a good description up to surprisingly high densities of
(ρ � 1010 cm−3). The Monte Carlo results, however, also
yield the correct high-density limit [36], and should, hence, be
applicable for arbitrary interaction strengths and densities.

3
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3. CPT experiments

3.1. Experimental conditions

The experiments on CPT (see also [26]) are performed in
a magneto-optical trap of 87Rb atoms with peak densities
of up to 6.6 × 109 cm−3. Starting from the stretched state
5S1/2(F = 2,mF = 2) the atoms can be excited to Rydberg
states in a two-photon excitation where the first photon at
780 nm couples the ground state to the intermediate state
5P3/2(F = 3,mF = 3). The second photon at around 480 nm
can be tuned and thereby address different Rydberg states.

To enhance interaction effects we start with a fraction of
the atoms being already excited to a Rydberg state. Therefore,
we apply two excitation pulses: the first one resonantly excites
up to 20% of the atoms to the Rydberg state, whereas in the
second step one laser is scanned across the resonance thereby
probing the initially prepared mixture of ground state and
Rydberg atoms. For comparison we also take spectra omitting
the first excitation step.

The detailed experimental sequence for the double-pulse
scheme is as follows: the first laser pulse is kept short (800 ns)
to avoid any decoherence processes. The Rabi frequencies
of this first pulse are �1 = 7.2 MHz on the lower transition
(780 nm) and �2 = 1.4 MHz on the upper transition (480 nm).
200 ns after the first excitation pulse the probe pulse is switched
on for a duration of 3 μs. For probing we keep the laser for the
lower transition resonant while scanning the laser for the upper
transition around the resonance. The Rabi frequencies are now
chosen to be �1 = 2.7 MHz on the lower and �2 = 1.4 MHz
on the upper transition. For these parameters on resonance the
system is close to its steady state at the end of the probing time.
Note that the blue laser is focused to a waist of 37 μm whereas
the red laser beam has a diameter of 1 mm. Therefore, the red
laser intensity can be treated as constant over the excitation
volume while the Gaussian intensity distribution of the blue
laser is associated with a spatial variation of Rabi frequencies.
The above specified values are the peak Rabi frequencies on
the upper transition. After the second pulse we ionize the
Rydberg atoms by applying an electric field and we detect the
resulting ions on a microchannel plate detector.

3.2. CPT in a non-interacting system

Figures 3(a) and (b) show exemplary Rydberg-CPT scans for
30S states where the amount of Rydberg atoms after the second
excitation step is plotted versus the detuning of the second
excitation step. At ±15 MHz the second pulse is too far away
from the two-photon resonance to significantly couple the
ground state to the Rydberg state. Therefore, the signal depicts
the amount of Rydberg atoms excited by the first (resonant)
pulse. With the frequency of the second step coming closer
to resonance the light field starts to interact with the atoms,
which results in Rydberg atoms being stimulated down to the
fast decaying intermediate level. Hence, the Rydberg signal is
reduced. On resonance the dark state is populated, which can
be deduced from the subnatural resonance width. Figures 3(c)
and (d) show the same scans but without the first excitation
pulse. We find that, in contrast to what one would expect from
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Figure 3. 30S Rydberg population as a function of the probe laser
detuning �2 for different peak Rabi frequencies �2 of the blue
probe laser, �2 = 0.85 MHz in (a) and (c) and �2 = 1.7 MHz in
(b) and (d). The first excitation pulse is applied in (a) and (b), and
off in (c) and (d). The red (grey) dots are measured data, the black
lines are calculations based on the OBEs. The only free parameter is
the absolute amplitude of the signal. This we need to adjust to make
a connection between the population ρ33 (values between 0 and 1)
and the measured signal (V*ns). However, this parameter is chosen
the same for all datasets.

(1), the resonance amplitude is higher in the case of larger Rabi
frequencies �2. This is due to the spatial distribution of the
probe Rabi frequency where �2 denotes only the peak value of
a Gaussian intensity distribution. Around the peak value there
is a large region where due to the smaller Rabi frequencies the
system has not relaxed into the dark state after 3 μs. Under
these experimental circumstances it is therefore not possible
to determine the Rydberg fraction using (1).

Since at typical densities in an magneto-optical trap the
interatomic distance is too large for 30S atoms to interact
with each other, they can be described within a single-
atom picture. Including decay rates and laser linewidths as
well as blackbody redistribution into the OBEs the measured
spectrum can be reproduced by solving the OBE for the
specific parameters of the experiment (see figure 3). Since
the intermediate state is not part of the dark state (1) its
natural lifetime does not contribute to the resonance width
of the CPT spectrum and hence subnatural linewidths can be
achieved. The laser linewidths were measured to be 1 MHz
on the lower and 0.5 MHz on the upper transition. As can
be seen from figure 3, the OBEs describe the non-interacting
system very well independent of the chosen Rabi frequencies
and independent of the starting conditions.

3.3. CPT in an interacting Rydberg system

Working with 61S states we are in a regime where interparticle
interactions are expected to play a significant role as can be
seen from the measured excitation blockade (see e.g. [26]).
Due to the Rydberg–Rydberg interactions the measured CPT
spectra with 61S Rydberg atoms show a density dependence
(see figure 4) which results from the van der Waals potential
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Figure 4. CPT spectra with the Rydberg state 61S obtained for different ground state atom densities, i.e. for different interaction strengths.
The ground state density ρ is given relative to the density ρbl ≈ 1.3 × 109 cm−3 at which interaction effects become apparent. ρbl is
experimentally deduced from a blockade measurement (see e.g. [26]). The upper row shows the results obtained from the RDME approach
discussed in section 2, and the second row shows experimental data. The measured as well as the calculated spectra are normalized to the
asymptotic Rydberg signal at large detunings. Theory and experiment agree on a quantitative level and exhibit two main features: a reduced
aspect ratio of the spectra at higher densities as well as a slight broadening of the resonance due to blockade effects. Experimentally the
ground state atom density is varied by pumping a fraction of the ground state atoms into a hyperfine state which is decoupled from the
excitation lasers. The last row shows CPT scans without the first excitation step for various densities (note that in contrast to the two upper
rows the Rydberg signal is not plotted in relative units). The onset of CPT can be deduced from the subnatural linewidth at low densities.
The side peaks at ±20 MHz are due to a modulation of the blue laser which is required for laser locking.

being strongly dependent on the atomic distance. With
increasing ground-state atom density we find a reduced
aspect ratio of the signal as well as a slightly broadened
resonance which nevertheless stays subnatural despite the
strong interparticle interactions. The spectra agree on a
quantitative level with the theoretical spectra obtained from the
above-described reduced density matrix expansion (RDME)
approach.

To realize different starting conditions for the CPT
experiments the first excitation step is omitted. This leads
to the spectra shown in the last row of figure 4, where we find
the same central peak as in the second row, but no Rydberg
signal far away from resonance. Like in the second row, the
onset of CPT can be concluded from the subnatural linewidths,
which are, however, broadened due to the excitation blockade
at high densities.

4. EIT experiments

To explore the effect of the dipole blockade mechanism in
the EIT regime, experiments are performed using the setup
described in [27]. Following preparation in the 5S1/2(F =
2,mF = 2) ground state, a counter-propagating probe and

coupling laser are used to perform EIT spectroscopy. The
probe laser is scanned from �1/2π = −20 → +20 MHz
about the 5S1/2(F = 2) → 5P3/2(F

′ = 3) resonance in
500 μs, whilst the coupling laser is stabilized on resonance
with the 5P3/2(F

′ = 3) → 60S1/2 transition using an EIT
locking scheme [37]. The probe and coupling lasers are tightly
focussed to 1/e2 radii of 12 μm and 66 μm, respectively,
to enhance the coupling laser Rabi frequency. Probe laser
transmission is taken as a function of �1, varying the probe
power from 1 pW to 1 nW to measure the nonlinearity due
to dipole interactions. Transmission is recorded using a
single-photon counting module, taking the average of 100
measurements for each dataset.

Figure 5(a) shows data taken at a density of ρ =
1.2 ± 0.1 × 1010 cm−3, giving around 7000 atoms in the
overlap volume of the lasers. In the weak probe regime,
almost 80% transmission is observed. Fitting the spectrum
to the theoretical weak-probe susceptibility enables the values
of the coupling Rabi frequency and the laser linewidths to
be determined, giving �2/2π = 4.8 MHz, the probe laser
linewidth equal to 300 kHz and the relative two-photon laser
linewidth of 110 kHz. For the 60S1/2 state the lifetime is
∼100 μs, giving an effective dephasing rate of 10 kHz. This

5
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Δ Δ

(a) (b)

Figure 5. Probe-beam transmission spectrum for different probe
powers corresponding to �1 = 0.3 MHz (circles, solid line),
1.0 MHz (squares, dashed line) and 2.0 MHz (triangles, dotted line)
at a peak density of 1.2 × 1010 cm−3 and �2 = 4.8 MHz. The two
panels compare experimental data (a) to the theoretical MCRE
results (b), showing good agreement for the resonant transmission.

is much smaller than the two-photon laser linewidth which is
the dominant dephasing mechanism. The combination of the
dephasing and power broadening gives an FWHM of the EIT
resonance of 2 MHz.

As the probe power is increased the interactions modify
the EIT dark state within each blockade sphere, mixing in
the intermediate excited state which resonantly couples to the
probe beam. This can be seen from the suppression of the
resonant transmission to around 20% at �1/2π = 2.0 MHz.
Since there is neither a shift nor a broadening of the data,
this rules out ionization or dephasing as the suppression
mechanism [27].

Figure 5(b) shows our theoretical transmission spectrum
calculated using the Monte Carlo rate equation (MCRE)
approach described above. In these calculations we use
the value above for the Rabi frequency �2 and determine
the relative laser linewidths from the measured transmission
spectrum in the non-interacting, weak probe regime given
above. The results are then averaged over the experimentally
determined density distribution of the cloud and Gaussian
intensity profiles of the lasers. The theory shows very good
agreement with experiment for the resonant transmission with
no fitting parameters. The lineshape of the high-intensity
spectrum, however, displays an asymmetry not observed in
the experiment. The asymmetry in the theory arises from
resonances with the shifted Rydberg pair states, leading to
a reduction in the ground- and intermediate-state population.
We note that the theory assumes classical pulses and neglects
photon–photon correlations, such that the observed deviations
could be an indication of interaction-modified photon counting
statistics not covered by the theory. In addition, the absence of
the asymmetry in the experiments could be caused by motion
of the atoms due to the strong van der Waals interactions. The
latter are repulsive for the nS1/2 states and, thus, cause atoms to
be accelerated away from each other. For a pair of atoms with
6 μm separation, the interaction shift is 3 MHz. After 38 μs,
which is the time required to scan the probe laser by 3 MHz,

Δ Δ

(a) (b)

Figure 6. Probe-beam transmission spectrum for different probe
powers corresponding to �1 = 0.08 MHz (circles, solid line),
1.1 MHz (squares, dashed line) and 2.0 MHz (triangles, dotted line)
at a peak density of 3.5 × 109 cm−3 and �2 = 3.8 MHz. The two
panels compare experimental data (a) to the theoretical MCRE
results (b), showing good agreement for the resonant transmission.

this separation increases to R � 10 μm, which corresponds
to V (R) = 0.5 MHz. Hence, initially resonant atoms move
out of resonance during the probe scan, leading to a larger
absorption than obtained theoretically under the frozen gas
assumption.

This paper is supported by the good agreement between
theory and experiment at lower densities (see figure 6), for
which asymmetries are found in both the experimental and
theoretical data. Since the mean interparticle distance is larger
at lower densities, motional effects due to pair repulsion are
expected to become less important with decreasing density.

5. Universal scaling

The two experiments discussed in sections 3 and 4 cover the
regimes of large and small Rydberg admixture. In section 3
(�1 > �2), we have measured the narrow Rydberg excitation
line arising from CPT, by probing the Rydberg population
ρ33, which directly yields the fraction f bl of interaction-
blocked Rydberg excitations. In section 4, measurement of the
transmission in the weak excitation regime (�1 < �2) gave
direct information about the probe-beam optical susceptibility
χ12, demonstrating EIT and its nonlinear modification due
to the strong interactions. As shown recently using the
presented MCRE approach [36], these quantities, f bl and χ12,
are connected by a simple universal relation

χ̃12 = fbl + χ̃
(0)
12

1 + fbl
(5)

upon scaling the three-level susceptibility by the correspond-
ing two-level value χ

(2lv)
12 , i.e. χ̃12 = χ12/χ

(2lv)
12 . χ̃

(0)
12 denotes

the scaled susceptibility for non-interacting atoms arising from
the finite linewidth of the excitation lasers. As shown in
figure 7, this simple scaling allows the two different
experiments to be related, showing that they, in fact,
cover overlapping regimes in terms of the realized blockade
fractions and scaled susceptibilities. Future merging of the
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χ 12

Figure 7. Universal relation between the scaled susceptibility
χ̃12 = χ12/χ

(2lv)

12 and the fraction f bl of interaction-blocked Rydberg
excitations. The horizontal and vertical lines mark our
measurements of the blockade fraction (squares and dotted lines),
figure 4(c), and of the probe-beam transmission (circles and dashed
lines), figure 5(a).

two presented experimental approaches to simultaneously
measure the Rydberg population and the probe transmission
should allow verification of this universal relation between the
interaction blockade and the nonlinear optical response of a
Rydberg-EIT medium.

6. Conclusion

In this work, we have presented a joint experimental and
theoretical study of three-level interference effects in a
strongly interacting Rydberg gas, covering the regimes of
weak Rydberg state admixture and strong Rydberg excitation.
We show that the experimental observations are accurately
described using a many-body approach based on either a
reduced many-particle density matrix or a Monte Carlo
sampling of the excitation rate. We point out a universal
scaling of the optical response with the Rydberg blockade
fraction and suggest how the combination of the two
experimental techniques presented could enable experimental
verification of this property.
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