

Effizienzsteigerung durch Pixelvergrößerung?

DPG 2010 T 57.9

Markus Köhli Universität Freiburg

18. März 2010

Inhalt

TimePix-Setup

Studien zu Pixelgrößen

Ladungseichung

Neue Testkammer

Testaufbau

GEM Setup HV Driftkathode 6mm Driftfeld GEM 2mm Transferfeld GEM 2mm Transferfeld GEM Induktionsfeld 2mm Readout PCB Readout Signal

GEM+TimePix

2

Ladung verteilt über dutzende Pixel

- Folge:
- Wenige e⁻ pro Kanal (Starke Diffusion innerhalb des GEM-Stapels)
 - Höherer effektiver (Nachweis-)Schwellenwert
 - → Hohe Gasverstärkung zur Detektion von minimalionisierenden Teilchen notwendig

Pixelgeometrie

Postprozessierte Chips (Bonn, IZM)

- 1x1: Metallisierung erweitert von \approx 20x20 µm² auf \approx 50x50 µm²
- 2x2: 3 von 4 Pixeln passiviert, dann metallisiert Pixelgröße 105x105 μm²

Motivation: vergrößerte Pixel

- Mehr Ladung pro Pixel
 - -> höhere Nachweiswahrscheinlichkeit
- Optimierung von räuml. Auflösung gegen Pixelgröße

6 keV Fe⁵⁵ Cluster

1x1

Testpulse

Vergleich: Homogenität

USB Interface(1.2.2): Testpulskalibration nicht möglich

Testpulse

Problem

6

- Entladestrom variiert von Pixel zu Pixel
 - \rightarrow Variation in TOT

Design and characterization of 64K pixels chips working in single photon processing mode Xavier Llopart Cudié 2007

Kalibration

Bisher: Kalibration chipweise (Mittelwert über alle Pixel)

• TOT counts hängen linear von der deponierten Ladung ab

 $TOT = b \cdot Q + a$

→ jeder Pixel hat eigene Antwortfunktion

Variation Steigung

Verteilung der Steigungen (Muros)

Variation der Steigung: 4% Relativer Fehler des Fits: 3%

Unter Annahme einer Konvolution von geg. (Pixel-)Verteilung und gaußverteilter statistischer Streuung:

→ Variation der Steigung ca. 2%

Kalibration mit größerer Genauigkeit notwendig

Daten: 1x1 metallisiert

Neuer Prototyp 2009

Ziele

- modularer Aufbau
- nicht magnetisches Material
- gasdicht (div. Gase)
- GEM (mit 12x12 cm²) incl.
 - Ausleseelektronik
 - HV
- Experimente mit:
 - N₂-Laser
 - Teststrahl
 - radioaktive Quelle
- leichter Austausch von TimePix-Modellen

Neuer Prototyp 2009

Ziele

- modularer Aufbau
- nicht magnetisches Material
- gasdicht (div. Gase)
- GEM (mit 12x12 cm²) incl.
 - Ausleseelektronik
 - HV
- Experimente mit:
 - N₂-Laser
 - Teststrahl
 - radioaktive Quelle
- leichter Austausch von TimePix-Modellen

- Eine neue Testkammer wurde entwickelt
- Pixelgenaue Kalibration kann Ladungsrekonstruktion verbessern
- Pixelvergrößerung reduziert die Nachweisschwelle
- USB-Interface(1.2.2) sollte nicht zur Kalibrierung verwendet werden

- weitere Studien zur Testpulskalibration
- Vergleich von postprozessierten Chips (n x n) in Hinsicht:
 - Gasverstärkung
 - Ortsauflösung
 - Nachweiseffizienz

The TimePix chip 2006

A modified MediPix2 Chip for TPC applications

Motivation:

knowing the time of arrival of avalanches at pixels

- \Rightarrow use 14bits counter not for counting the #hits, but for counting clock cycles
- (only lower threshold)
- clock up to 100 MHz in each pixel
- threshold (whole chip): ≈ 700 e⁻
- 4 different modes possible

modes definable for every pixel using a "map"

TPC-Setup:

- use Time-arrival mode
- use TOT for calculating charge

TimePix chip with active area (green)

The TimePix chip 2006

TimePix Modes

Chamber

TOT proportional to deposited charge

