Neutron Detection

PI/ANP

The synthesis of _____

Markus Köhli

GEMs and Solid State Converters

Universität Heidelberg

Bundesministerium für Bildung und Forschung

PI/ANP

Cross section: active detection volume

Active Detection Volume

Readout

Electronics

>Howto: Neutron Detection

Cross section: active detection volume

Energy of the particles (thin layer)

Markus Köhli

PI/ANP

>Howto: Neutron Detection

Cross section: active detection volume

Energy of the particles (thick layer) 0.12 0.1 0.08 0.06 Li 0.04 α 0.02 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 Energy [MeV]

Markus Köhli

PI/ANP

> Howto: Neutron Detection

Cross section: active detection volume

Energy of the particles (thick layer) 0.12

Neutrons

Casing

Howto: Neutron Detection

Cross section: active detection volume

- readout stripes: 128 x | 128 y @ 1.56mm - double sided

Drift Field

Solonisation track

GEM

Markus Köhli

.....

-Boron

PI/ANP Universität Heidelberg

- Neutron conversion in Boron-10

¹⁰ B + n	\rightarrow ⁷ Li + α + 2.79 MeV	(6%)
	⁷ Li [*] + α + 2.31 MeV	(94%)

- Charge amplification with GEMs in standard gas

Readout

- readout stripes: 128 x | 128 y @ 1.56mm - double sided

Electronics

-A/D: CiPix –Chip (ASIC) with 10 MHz -FPGA based data preprocessing o histogram (on the fly) - Optical GBit Interface

CASCADE detector without housing

PI/ANP

Markus Köhli

Universität Heidelberg

Readout electronics

nXYter Schematic

Left About: Conduct

- 2D ,imaging'
- rate capability
- efficiency
- GEM gain
- Spin Echo

Markus Köhli PI/ANP Universität Heidelberg

PI/ANP

Image of a thermal neutron beam (after guide)

CASCADE – rate capability

CASCADE – rate capability

CASCADE – detection efficiency

17

Mean local gas gain

Mean local gas gain

Spin Echo Spectroscopy

Application: High resolution neutron scattering:

Neutron Resonance Spin Echo Methods

Principle: Use Neutron Spin as Obervable in Interference Time Of Flight Experiments

e.g. Mach-Zehnder Interferometer in time

Polarization in two pixels:

• The CASCADE detector offers an alternative to classical ³He based systems with

- spatial resolution (2.6 mm)
- high count rate capability (up to 2 MHz)
- high time of flight resolution
 - -----> important for Spin Echo methods
- Efficiency depends on number of layers:

2x3 layers in operation (...-50% eff. at 5.4 Angstroms)

Ongoing Improvements:

- redesign for better ASIC (CiPix \rightarrow nXYter)
- more compact structures & improved field configuration

PI/ANP

scale up to 10 layers

Markus Köhli

22

Universität Heidelberg

-					
:::	Markus Köhli		Universität Vei	dolhowa titi	
		PI/ANP	UNIVERSICAL HEI	Jerberg	

Efficiency and internal scattering

The Scattering Map

