

Bundesministerium

On the Phase Front of Neutron Detection

TU München E21 Seminar: Neutronen in der Forschung und Industrie 16. November 2015

U. Schmidt ANP-PAT

Ruprecht-Karls-Universität Heidelberg

Physikalisches Institut

Heidelberg Research Fields

Heidelberg Research Fields

Cosmic Radiation

 MARKUS KÖHLI Physikalisches Institut	Heidelberg University

Cosmic Radiation

....

MARKUS KÖHLI	Physikalisc	hes Institut	Heidelberg University
			0 5

Markus Köhli	Physikalisches Institut	Heidelberg University

The Cosmic Ray Neutron Spectrum

Physikalisches Institut Heidelberg University

MARKUS KÖHLI

Rainfall and Neutron Background

R.P. Kane, "Recurrence Phenomenon in the 24-Hour Variation of Cosmic-Ray Intensity" Phys Rev, 98, 1, 1955

MARKUS KÖHLI

FIG. 1. Day-to-day variations of atmospheric neutron fluxes 30 cm under the ground and rainfall on the ground.

> Heidelberg University Physikalisches Institut

[1]

[1] https://upload.wikimedia.org/wikipedia/commons/4/42/Crossroads_Gathering_Pearl.jpg

[2] T. Kouzes et al., Cosmic-ray-induced ship-effect neutron measurements and implications for cargo scanning at borders, NIMA , 587 1, 2008 , 89-100

The Ship Effect

[1] https://upload.wikimedia.org/wikipedia/commons/4/42/Crossroads_Gathering_Pearl.jpg

[2] T. Kouzes et al., Cosmic-ray-induced ship-effect neutron measurements and implications for cargo scanning at borders, NIMA , 587 1, 2008 , 89-100

MARKUS KÖHLI

CRNS Campaign

......

the second s		
MARKUS KÖHLI	Physikalisches Institut	Heidelberg University
	injoindisence institut	mendeling entitleneng

Soil Moisture Measurement Scales

via satellite remote sensing (optical, microwave)

NO (affordable) technique in between

via local techniques (electrical resistivity, capacitance, etc) (even neutrons...)

[2]

[1] ESA SMOS (<u>http://www.esa.int/Our_Activities/Observing_the_Earth/SMOS/Horn_of_Africa_drought_seen_from_space</u>)
[2] The Clay Research Group (http://www.theclayresearchgroup.org/images/ert.jpg)

Cosmic Ray Neutrons Simulation

How far do reflected neutrons travel?

- Video removed -

How far do reflected neutrons travel?

Physikalisches Institut Heidelberg University

MARKUS KÖHLI

Data vs Simulation

Detected neutron origins (first contact to soil)
Closest 86% of neutron origins for each 12° sector
Neutron intensity for each 12° sector [arb. units]
Footprint *R_{es}*(5g/m³_i 5 %)=210m for homogeneous soil

Neutron Detection Novel Detectors

Markus Köhli	Physikalisches Institut	Heidelberg University
--------------	-------------------------	-----------------------

::

Element		Reaction	CS at 25.2 meV
³ He	$^{3}\text{He}+n \longrightarrow$	$^{3}\text{H}+764\text{keV}+\text{p}$	5327 b
⁶ Li	$^{6}\text{Li}+n \longrightarrow$	$^{3}\text{H}+\alpha+4.78\text{MeV}$	940 b
¹⁰ B	$^{10}B+n \longrightarrow$	$^{7}\text{Li} + \alpha + 2.79 \text{ MeV} (6 \%)$	3837 b
	$^{10}B+n \longrightarrow$	$^{7}\text{Li}^{*}+\alpha + 2.31 \text{ MeV} (94 \%)$	
¹⁵⁵ Gd	$^{155}Gd+n \longrightarrow$	$^{156}\text{Gd} + \gamma + e^- + (30 - 180) \text{ keV}$	61000 b
¹⁵⁷ Gd	$^{157}Gd+n \longrightarrow$	$^{158}{\rm Gd}{+}\gamma + e^- + (30-180){\rm keV}$	254000 b
²³⁵ U	235 U+n \longrightarrow	fission fragments $+ 160 \mathrm{MeV}$	584 b

Light

Helium Conversion

Langford et al., "Event Identification in 3He Proportional Counters Using Risetime Discrimination" arXiv:1212.4724v1

MARKUS KÖHLI	Physikalisches Institut	Heidel	berg University	
	 		0 7	10

Lithium Conversion

[1] P.F. Mastinu et al., "A low-mass neutron flux monitor for the n_TOF facility at CERN", Braz. J. Phys. vol.34 no.3, 2004 [2] "A Compact Neutron Detector Based on the use of a SiPM Detector", IEEE Nuc. Spring Symp., 2008

MARKUS KÖHLI

 Physikalisches Institut	Heidelberg University	
 	6	

Boron Conversion

MARKUS KÖHLI

Р	Physikalisches Institut Heidelberg University	
---	---	--

Boron Conversion

Heidelberg University Physikalisches Institut

CNCS inelastic spectrometer, SNS

Titan II Rocket in Launch Silo, Arizona State Museum

S

R. S. Norris and H. Kristensen, "Global nuclear stockpiles, 1945-2006," Bulletin of the Atomic Scientists 62, no. 4 (2006), 64-66

R. S. Norris and H. Kristensen, "Global nuclear stockpiles, 1945-2006," Bulletin of the Atomic Scientists 62, no. 4 (2006), 64-66

[1] http://www.saphymo.com/photos/ecatalogue/116-2/access-control-clearance-monitors-rcp-radiological-control-for-pedestrian.jpg

[2] http://cits.uga.edu/uploads/1540compass/1540images/_compass750/RPM1.jpg

[1] http://www.saphymo.com/photos/ecatalogue/116-2/access-control-clearance-monitors-rcp-radiological-control-for-pedestrian.jpg

[2] http://cits.uga.edu/uploads/1540compass/1540images/_compass750/RPM1.jpg

MARKUS KÖHLI

Figure 2.5 Helium-3 demand and annual U.S. production, 2011–18, as projected in 2009 and 2011. Source: GAO analysis of information from the interagency policy committee.

"Neutron detectors - Alternatives to using helium-3", GAO, 2011

ESS Instrumentation

Instrument	Detector area	Wavelength range	Time resolution	Spatial resolution
	$[m^2]$	[A]	$[\mu s]$	[mm]
Multi-purpose imaging	0.5	1 - 20	1	0.001 - 0.5
	2	4 99	100	10
General purpose polarised SANS	5	4 - 20	100	10
Broad-band small sample SANS	14	2 - 20	100	1
Surface scattering	5	4 - 20	100	10
Horizontal reflectometer	0.5	5 - 30	100	1
Vertical reflectometer	0.5	5 - 30	100	1
Thermal powder diffractometer	20	0.6 - 6	< 10	2×2
Bi-spectral powder diffractometer	20	0.8 - 10	< 10	2.5 imes 2.5
Pulsed monochromatic powder diffractom.	4	0.6 - 5	< 100	2×5
Material science & engineering diffractom.	10	0.5 - 5	10	2
Extreme conditions instrument	10	1 - 10	< 10	3 imes 5
Single crystal magnetism diffractometer	6	0.8 - 10	100	2.5×2.5
Macromolecular diffractometer	1	1.5 - 3.3	1000	0.2
Cold chapper spectrometer	80	1 - 20	10	10
Bi-spectral chopper spectrometer	50	0.8 - 20	10	10
Thermal chopper spectrometer	50	0.6 - 4	10	10
Cold anystel analyser spectrometer	1	2 2	< 10	5 10
Vibrational anatyser spectrometer	1	2-8	< 10	5 - 10 10
De alega ettering en actuary at en	1	0.4 - 5	< 10	10
Backscattering spectrometer	0.3	2 - 8	< 10	10
High-resolution spin echo	0.3	4 - 25	100	10
Wide-angle spin echo	3	2 - 15	100	10
Fundamental & particle physics	0.5	5 - 30	1	0.1
	000 0			E
Total	282.6			

ESS TDR 2013

ESS Instrumentation

Instrument	Detector technology							
	$^{10}\mathrm{B}$	thin films	Scinti	llators	³ He	Mic	ropattern	
	\perp		WSF	Anger		Rate	Resolution	
Multi-purpose imaging	-	-	-	-	-	о	+	_
General purpose polarised SANS	0	+	-	+	0	+	-	
Broad-band small-sample SANS	0	+	-	+	-	+	-	
Surface scattering	0	+	-	+	0	+	-	
Horizontal reflectometer	-	0	-	+	+	0	-	
Vertical reflectometer	-	0	-	+	+	0	-	
Thermal powder diffractometer	0	+	+	-	-	0	-	
Bi-spectral powder diffractometer	0	+	+	-	-	0	-	
P-M powder diffractometer	0	+	+	-	-	0	-	
MS engineering diffractometer	0	+	+	-	-	o	-	
Extreme conditions diffractometer	0	+	+	-	-	0	-	
Single crystal diffractometer	0	+	+	-	-	0	-	
Macromolecular diffractometer	-	0	0	0	-	+	+	
Cold chopper spectrometer	+	0	0	-	-	-	-	
Bi-spectral chopper spectrometer	+	+	0	-	-	-	-	
Thermal chopper spectrometer	+	+	+	-	-	-	-	
Cold crystal analyser spectrometer	_	0	_	+	+	-	-	
Vibrational spectrometer	_	0	-	0	+	-	-	
Backscattering spectrometer	-	0	-	+	+	-	-	
High-resolution spin echo	_	0	_	0	+	+	_	
Wide-angle spin echo	-	0	-	0	+	+	-	
Fundamental & particle physics	-	-	-	-	+	+	+	ESS TDR 2013 _

MARKUS KÖHLI

Physikalisches Institut Heidelbe

Heidelberg University

31× boron-coated straws, 4.43 mm diameter each

MARKUS KÖHLI

Aluminum tube, 1.15" ID

J. L. Lacy et al., "The Evolution of Neutron Straw Detector -Applications in Homeland Security", IEEE Transactions on Nucl. Science, 60,2,2013

Physikalisches Institut Heic

Heidelberg University

F. Piscitelli et al., "Novel Boron-10-based detectors for Neutron Scattering Science" arXiv:1501.05201v1

 MARKUS KÖHLI	Physikalisches Institut	Heidelberg University	
 		mendeng entrenengy	Ľ

New Detectors – He-3 Replacements

Ch. J. Schmidt, "The 10B-based Jalousie Neutron Detector", DENIM 2015

Physikalisches Institut

Heidelberg University

I. Stefanescu et al., "Development of a novel macrostructured cathode for large-area neutron detectors based on the 10B-containing solid converter", NIMA 727, 2013

D. Pfeiffer et al., "The mTPC Method: Improving the Position Resolution of Neutron Detectors Based on MPGDs", 2015 arXiv:1501.05022v1

MARKUS KÖHLI	Physikalisches Institut	Heidelberg University

New Detectors – Gd Imaging

Figure 13. Neutron images of a screw and nut: left image a 240 sec. exposure with a Gd converter, righ image a 120 sec. exposure with a 10-B converter.

```
E. Lehmann et al., "Neutron imaging—detector options and practical results", NIM A 531, 2004
E. Lehmann et al., "Neutron imaging — Detector options in progress ", JINST, 2011
```

MARKUS KÖHLI

Fig. 7. Radiography image of a sprinkler nozzle made with different imaging systems, PILATUS (left), imaging plate (right).

New Detectors – 3D Silicon

MARKUS KÖHLI

R.J. Nikolic et al. "Roadmap for High Efficiency Solid-State Neutron Detectors", Barry Chin Li Cheung Publications, 15 D.S. McGregor et al., "High-efficiency microstructured semiconductor neutron detectors that are arrayed, dual-integrated, and stacked ", Applied Radiation and Isotopes 70, 2012

New Detectors – MediPix/TimePix

Fig. 2. Energy spectrum of UCN beam.

J. Uhrt et al., "Single Neutron Pixel Detector Based on Medipix-1 Device", 2004 "Performance of a pixel detector suited for slow neutrons", 2005 "3D Neutron Detectors", 2007, " Position-sensitive spectroscopy of ultra-cold neutrons with Timepix pixel detector ", 2009

MARKUS KÖHLI	ķ	;	;	•	i	-	1
	•						

Fig. 3. Photograph (a) and neutron radiographic images of a bee; (b) thermal neutron beamline NEUTRA, acquisition time 15 min; (c) cold neutorn beamline ICON, acquisition time 3 min. The edges of the hypodermic needle show some diffraction enhancement.

Physikalisches Institut Heide

D. Vartsky et al., "Large Area Imaging Detector for Neutron Scattering Based on Boron-Rich Liquid Scintillator", NIMA 504, 2003

New Detectors – GEM + Scintillation

Z. Wang et al., "A multilayer surface detector for ultracold neutrons", arXiv:1503.03424v3

MARKUS KÖHLI	Physikalisches Institut	Heidelberg University

New Detectors - WLSF

MARKUS KÖHLI

Physikalisches Institut Hei

Heidelberg University

C.M. Lavelle et al., "Demonstration of neutron detection utilizing open cell foam and noble gas Scintillation", Apl. Phys. Let. 106, 2015

CASCADE The Detector

CASCADE detector without housing

Active Detection Volume

Readout

Electronics

CASCADE detector without housing

 MARKUS KÖHLI	Heidelberg University	ľ
	s s s s s s s s s s s s s s s s s s s	ł

(Gas Electron Multiplier foil)

	MARKUS KÖHLI	Physikalisches Institut	Heidelberg University
2.5			3

 MARKUS KÖHLI Physikalisches Institut	Heidelberg University	
	3 1	F

MARKUS KÖHLI Physikalisches Institut Heidelberg University

Conversion Products: Energy Spectra

Conversion Products: Energy Spectra

......

MARKUS KÖHLI

Conversion Products: Energy Spectra

MARKUS KÖHLI

CASCADE Characterization Measurements

CASCADE Characterization Measurements

Spatial Resolution

Spatial Resolution

MARKUS KÖHLI

Spatial resolution: 2.4 mm FWHM

Cross section of a collimated n beam

Detection Efficiency 1.5 - 0.8 - 1.0 - 1.0 - 0.8 - x

Simulation of the 2D efficiency and data of 0.6 Å, 0.8 Å and 1.2 Å

Simulation of the 2D efficiency with different coating thicknesses

Detection Efficiency

J. L. Lacy et al., "The Evolution of Neutron Straw Detector -Applications in Homeland Security", IEEE Transactions on Nucl. Science, 60,2,2013

Fig. 7. Intrinsic thermal neutron efficiency of a $2.92 \text{ cm} (1.15\text{in})^3$ He tube as a function of gas pressure. The horizontal lines mark the efficiency calculated by (3),

CASCADE Spin Echo

1972, F. Mezei, ILL

MARKUS KÖHLI

1972, F. Mezei, ILL

Spin Echo Example

MARKUS KÖHLI

Classical Diffusion of micelles

MARKUS KÖHLI

Natriumdodecylsulfat in D₂O

for classical diffusion :

Heidelberg University

 $\widetilde{S}_{inc}(\vec{q},t) \propto e^{-Dq^2t}$

Physikalisches Institut

RESEDA, FRMII: spectrometer arms 3 - 15 Å @ 11% FWHM

MARKUS KÖHLI

Heidelberg University Physikalisches Institut

HeidelbergUniversity 🚦

space

time

100 kHz x16

Boron-10 technology

a high rate, spatially and time resolved detector for Spin Echo applications

- conversion layer identification
- high TOF resolution (100 ns readout)
- 2.4 mm FWHM spatial resolution
- 2 MHz rate capability
- 21% thermal neutron efficiency @ 6 layers