Martin Schrön

Prof. Dr. Peter Dietrich

Markus Köhli

Probing nano and macro scales

solid state detectors

and

cosmic neutron soil moisture determination

9th PNN Oil Well Logging Conference 18.09.2014

HELMHOLTZ | CENTRE FOR | ENVIRONMENTAL | RESEARCH - UFZ

HEIDELBERG RESEARCH FIELDS

Helium-Xenon EDM [test of Lorentz invariance]

PERC and PERKEO [neutron lifetime]

 $\vec{B}(t) = \begin{pmatrix} B_x(t) \\ B_y(t) \\ B_z \end{pmatrix}$

Neutron Detectors [large area and high time resolution]

N(x, y; t)

Boron-lined Solid State Detectors

large area and high time resolution

Soil Moisture Determination Monte-Carlo Simulations of neutron measurement Contents

Alternative Technologies to He-3

Soil Moisture Determination Monte-Carlo Simulations of neutron measurement Contents

[1] Hajo Drescher, Universität Frankfurt

Alternative Technologies to He-3

Neutron Transport Simulations

NEUTRON DETECTORS

NEUTRON DETECTORS

NEUTRON DETECTORS

Page 10

GEM (Gas Electron Multiplier foil)

(without housing)

(without housing)

Active Detection Volume

- Neutro	n conversion with Boron-	10
¹⁰ B + n	\rightarrow ⁷ Li + α + 2.79 MeV	(6%)
	⁷ Li [*] + α + 2.31 MeV	(94%)
- Charge	amplification with GEMs	in Standard Ga

(without housing)

Active Detection Volume

Neutron conversion with Boron-10			
¹⁰ B + n	\rightarrow ⁷ Li + α + 2.79 MeV	(6%)	
	⁷ Li [*] + α + 2.31 MeV	(94%)	
- Charge	amplification with GEMs	in Standard G	

Readout

- readout stripes: 128 x | 128 y @ 1.56mm
- double sided

as

(without housing)

Active Detection Volume

Neutron conversion with Boron-10				
¹⁰ B + n	\rightarrow ⁷ Li + α + 2.79 MeV	(6%)		
	⁷ Li*+ α + 2.31 MeV	(94%)		
- Charge	amplification with GEMs	in Standard Gas		

Readout

- readout stripes: 128 x | 128 y @ 1.56mm
- double sided

Electronics

-A/D: CiPix –Chip (ASIC) with 10 MHz -FPGA based data preprocessing o histogram (on the fly) - Optical GBit Interface

EFFICIENCY OF A MULTI-LAYER SYSTEM

Neutron wavelength [Angstroms]

EFFICIENCY OF A MULTI-LAYER SYSTEM

Neutron wavelength [Angstroms]

APPLICABLE FOR TOOLS

APPLICABLE FOR TOOLS?

Conical Multi-Layer GEM Detector

APPLICABLE FOR TOOLS?

Conical Multi-Layer GEM Detector

MONTE CARLO SIMULATIONS SOIL MOISTURE DETERMINATION

[1] FOF002382 Fotofeeling at Visualphotos.com

NEUTRON SENSING METHODS

active

passive

NEUTRON SENSING METHODS

passive

NEUTRON SENSING METHODS

active small distinct domain

passive

large area, diffusive

PROBE SOIL MOISTURE

PROBE SOIL MOISTURE

Markus Köhli

PROBE SOIL MOISTURE

by cosmic radiation induced

PROBE SOIL MOISTURE

Intensity? Energy

dependence?

[1] Goldhagen, P., Clem, J., and Wilson, J. (2004). The energy spectrum of cosmic-ray induced neutrons measured on an airplane over a wide range of altitude and latitude. Radiation Protection Dosimetry, 110(1-4):387–392

Page 34

SPECTRUM VARIATION BY WATER

(with thermal neutron cutoff)

SPECTRUM VARIATION BY WATER

Markus Köhli

HELMHOLTZ | CENTRE FOR ENVIRONMENTAL RESEARCH – UFZ

SPECTRUM VARIATION BY WATER

APPLICATION FOR PNN

Page 43

APPLICATION FOR PNN

Understanding Response Curves

Zhang and Kang, GPN

CURRENT ACHIEVEMENTS

Design, construction and operation of boron-lined detectors

proofs success of that technology

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

CURRENT ACHIEVEMENTS

Design, construction and operation of boron-lined detectors
proofs success of that technology

Monte-Carlo neutron transport modelling methods

lead to the understanding of how to use the ,Neutron Tool'

CURRENT ACHIEVEMENTS

Design, construction and operation of boron-lined detectors
proofs success of that technology

Monte-Carlo neutron transport modelling methods
lead to the understanding of how to use the ,Neutron Tool'

BACKUP SLIDES

Detector Development

BORON DETECTORS - 2

HEIDELBERG NEUTRON DETECTORS

