

Bundesministerium für Bildung und Forschung High Spatial Resolution in thermal Neutron Detection: from CASCADE to BASTARD

> DPG Frühjahrstagung Münster 27.03.2017

Markus Köhli

Physikalisches Institut (LCTPC) Rheinische Friedrich-Wilhelms-Universität Bonn

M. Klein, U. Schmidt (Uni Heidelberg) T. Wagner, F. Schmidt, J. Kaminski, K. Desch (Uni Bonn)

Element		CS at 25.2 meV	
³ He	$^{3}\text{He}+n \rightarrow$	³ H+764 keV	5327 b
⁶ Li	$^{6}\text{Li}+n \rightarrow$	$^{3}\text{H}+\alpha$ + 4.78 MeV	940 b
¹⁰ B	$^{10}\text{B+n} \rightarrow$	$^{7}\text{Li} + \alpha + 2.79 \text{ MeV} (6.4\%)$	3837 b
	$^{10}\mathrm{B+n}{ ightarrow}$	$^{7}\text{Li}+\gamma + \alpha + 2.31 \text{ MeV} (93.6\%)$	

Physikalisches Institut Univ

[1] http://www.saphymo.com/photos/ecatalogue/116-2/access-control-clearance-monitors-rcp-radiological-control-for-pedestrian.jpg [2] http://cits.uga.edu/uploads/1540compass/1540images/_compass750/RPM1.jpg

MARKUS KÖHLI

University of Bonn Physikalisches Institut

[2]

MARKUS KÖHLI

Physikalisches Institut

ESS Instrumentation

Instrument	$\begin{array}{c} {\rm Detector} \\ {\rm area} \\ [{\rm m}^2] \end{array}$	Wavelength range [Å]	${f Time}\ {f resolution}\ [\mu s]$	Spatial resolution [mm]	
Multi-purpose imaging	0.5	1 - 20	1	0.001 - 0.5	
General purpose polarised SANS	5	4 - 20	100	10	
Broad-band small sample SANS	14	2 - 20	100	1	
Surface scattering	5	4 - 20	100	10	
Horizontal reflectometer	0.5	5 - 30	100	1	
Vertical reflectometer	0.5	5 - 30	100	1	
Thermal powder diffractometer	20	0.6 - 6	< 10	2×2	
Bi-spectral powder diffractometer	20	0.8 - 10	< 10	2.5×2.5	
Pulsed monochromatic powder diffractom.	4	0.6 - 5	< 100	2×5	
Material science & engineering diffractom.	10	0.5 - 5	10	2	
Extreme conditions instrument	10	1 - 10	< 10	3 imes 5	
Single crystal magnetism diffractometer	6	0.8 - 10	100	2.5×2.5	
Macromolecular diffractometer	1	1.5 - 3.3	1000	0.2	
Cold chopper spectrometer	80	1 - 20	10		
Bi-spectral chopper spectrometer	50	0.8 - 20	10	mb	
Thermal chopper spectrometer	50	0.6 - 4	10	S Des	
Cold crystal-analyser spectrometer	1	2 - 8	< 10		
Vibrational spectroscopy	1	0.4 - 5	< 10		
Backscattering spectrometer	0.3	2 - 8	<		
High-resolution spin echo	0.3	4 - 25	100	10	
Wide-angle spin echo	3	2 - 15	100	10	
Fundamental & particle physics	0.5	5 - 30	1	0.1	
Total	282.6				ESS TDR 2013

ESS Instrumentation

Instrument	Detector technology							
	^{10}B th	in films	Scinti	illators	³ He	Mic	ropattern	
	1		WSF	Anger		Rate	Resolution	
Multi-purpose imaging	-	-	-	-	-	0	+	-
General purpose polarised SANS	0	+	-	+	o	+	-	
Broad-band small-sample SANS	0	+	-	+	-	+	-	
Surface scattering	0	+	-	+	o	+	-	
Horizontal reflectometer	-	0	-	+	+	0	-	
Vertical reflectometer	-	0	-	+	+	о	-	
Thermal powder diffractometer	о	+	+	-	-	о	-	
Bi-spectral powder diffractometer	0	+	+	-	-	0	-	
P-M powder diffractometer	0	+	+	-	-	0	-	
MS engineering diffractometer	0	+	+	-	-	0	-	
Extreme conditions diffractometer	0	+	+	-	-	о	-	
Single crystal diffractometer	0	+	+	-	-	0	-	A A A A A A A A A A A A A A A A A A A
Macromolecular diffractometer	-	0	0	0	-	+	+	
Cold chopper spectrometer	+	0	0	_	_	_		
Bi-spectral chopper spectrometer	+	+	0	_	_	_	The	
Thermal chopper spectrometer	+	+	+	-	-	-		
Cold crystal analyser spectrometer	-	0	-	+	+		Ball of the last	
Vibrational spectrometer	-	0	-	0	+ 1	- m		
Backscattering spectrometer	-	Ο	-	+	+	H-		
High-resolution spin echo	-	о	-	0	+	+	-	
Wide-angle spin echo	-	0	-	0	+	+	-	A ANON
Fundamental & particle physics	-	-	-	-	+	+	+	ESS TDR 2013

MARKUS KÖHLI

Physikalisches Institut Universit

CASCADE The Detector

Heidelberg University

The CASCADE Detector

CASCADE detector without housing

4

Active Detection Volume

6 layers of Boron-10

Readout

128x128 crossed stripes @ 1.56 mm

Electronics

5x CIPix 64ch @ FPGA 10 MHz

Firmware based event reconstruction

CASCADE detector without housing

Physikalisches Institut

4

 MARKUS KÖHLI Physikalisches Institut	University of Bonn	ŝ
		67

Physikalisches Institut University of Bonn

University of Bonn Physikalisches Institut

Spatial Resolution

Spatial resolution: 2.4 mm FWHM

Image of a cold neutron beam (after guide)

CASCADE Spin Echo

RESEDA, FRMII: spectrometer arms 3 – 15 Å @ 11% FWHM

MARKUS KÖHLI

Physikalisches Institut Un

100 kHz x16

Phase View

Physikalisches Institut Univ

MARKUS KÖHLI

Physikalisches Institut

|--|

12

BASTARD & BODELAIRE

CASCADE

Uni Heidelberg

Technology available in 2000

GEM

CiPix Multichannel

-	Physikalisches Institut	Un
1.1		

CASCADE Uni Heidelberg

Technology available in 2000

CiPix Multichannel

MARKUS KÖHLI

New Project Uni Bonn Technology available in 2017 TPC TimePix VMM ASIC

Physikalisches Institut

Physikalisches Institut

MARKUS KÖHLI

MARKUS KÖHLI

University of Bonn

Physikalisches Institut

Markus Köhli

Physikalisches Institut (LCTPC)

Rheinische Friedrich-Wilhelms-Universität Bonn

Markus Köhli

Physikalisches Institut (LCTPC)

What can ¹⁰Boron based detectors offer?

Rheinische Friedrich-Wilhelms-Universität Bonn

Markus Köhli

Physikalisches Institut (LCTPC)

What can ¹⁰Boron based detectors offer?

high rate, spatially and time resolved detectors (for Imaging/Spin Echo applications)

Markus Köhli

Physikalisches Institut (LCTPC)

Rheinische Friedrich-Wilhelms-Universität Bonn

What can ¹⁰Boron based detectors offer?

high rate, spatially and time resolved detectors (for Imaging/Spin Echo applications)

BASTARD (high rate, good resolution)

What can ¹⁰Boron based detectors offer?

spatially and time resolved detectors (for Imaging/Spin Echo applications)

Markus Köhli

Physikalisches Institut (LCTPC)

Rheinische Friedrich-Wilhelms-Universität Bonn

BASTARD (high rate, good resolution)

high rate,

BODELAIRE (high resolution)

What can ¹⁰Boron based detectors offer?

spatially and time resolved detectors (for Imaging/Spin Echo applications)

Markus Köhli

Physikalisches Institut (LCTPC)

Rheinische Friedrich-Wilhelms-Universität Bonn

BASTARD (high rate, good resolution)

high rate,

BODELAIRE (high resolution)

