

Das CASCADE-Projekt

Neutronendetektion mittels ¹⁰Bor

22. März 2012

Markus Köhli

M. Klein, U. Schmidt AG Dubbers

Ruprecht-Karls-Universität Heidelberg

Active Detection Volume - Neutron conversion with Boron-10				
- Charge amplification with GEMs in Standard Gas				

UNIVERSITÄT HEIDELBERG

Cross section: active detection volume

Active Detection Volume

- Neutron conversion with Boron-10

¹⁰ B + n	→ ⁷ Li + α + 2.79 MeV ⁷ Li*+ α + 2.31 MeV	(6%) (94%)

- Charge amplification with GEMs in Standard Gas

Readout

- readout stripes: 128 x | 128 y @ 1.56mm - double sided

Active Detection Volume

- Neutron conversion with Boron-10

¹⁰ B + n	\rightarrow ⁷ Li + α + 2.79 MeV	(6%)
	⁷ Li [*] + α + 2.31 MeV	(94%)

- Charge amplification with GEMs in Standard Gas

Readout

- readout stripes: 128 x | 128 y @ 1.56mm

- double sided

Electronics

-A/D: CiPix –Chip (ASIC) with 10 MHz -FPGA based data preprocessing o histogram (on the fly) - Optical GBit Interface

80 MB/s Optical **Optical Gigabit CIPix-Board Gigabit Link** Link (X0) N's **FPGA** based PC **CIPix-Board Readout board** (X1) SRAM (16MB) Detector **CIPix-Board** for monitoring Frontend (Y0) DDR-SDRAM **CIPix-Board** (1GB) for (Y1) histogramming **CIPix-Board** PHA module t) 5ch, 40MHz, 12bit

System electronics

Specs:

- 4 CIPix ASICs reading 128x128 channels
 - 1 CIPix ASIC for TOF-resolution down to 100ns
 - FPGA based readout, control of CIPix, data-preprocessing and compression
 - electrically decoupled from host computer

Next: Replaced by nXYter

UNIVERSITÄT HEIDELBERG

1st: Radiography

Efficiency depends on the number of Boron layers

UNIVERSITÄT HEIDELBERG

- The CASCADE detector offers an alternative to classical ³He based systems with
 - high spacial resolution (about 2.6 mm)
 - high count rate capability (about 2 MHz)
- Efficiency depends on number of layers:

2x3 layers in operation (18%-40% depending on wavelenght)

Read charge signals at GEMs

- ----> Identify conversion layer
 - ---> High resolution in time of flight (position of conversion layer!)

Application: High resolution neutron scattering:

Neutron Resonance Spin Echo Methods

Principle: Use Neutron Spin as Obervable in Interference Time Of Flight Experiments

e.g. Mach-Zehnder Interferometer in time

Signal can be obtained in every single pixel and layer

Polarization in two pixels:

UNIVERSITÄT HEIDELBERG

From: FRM II, Reseda

- The CASCADE detector offers an alternative to classical ³He based systems with
 - high spacial resolution (about 2.6 mm)
 - high count rate capability (about 2 MHz)
 - high time of flight resolution (about 1 ns spin echo time)

reach new domains in scattering

• Efficiency depends on number of layers:

2x3 layers in operation (18%-40% depending on wavelenght)

Ongoing Improvements:

- redesign for better ASIC (CiPix \rightarrow nXYter)
- more compact structures & improved field configuration

HEIDELBERG

scale up to 10 layers and more

