Markus Köhli

Ulrich Schmidt Peter Dietrich

27.03.2015

UP 16.2

Soil moisture sensing

cosmic-ray induced neutron showers

cosmic-ray induced neutron showers

1

1

Soil moisture sensing by cosmic ray induced showers **M. Köhli**, M. Schrön, U. Schmidt, P. Dietrich, S. Zacharias

1

active small distinct domain

Soil moisture sensing by cosmic ray induced showers **M. Köhli**, M. Schrön, U. Schmidt, P. Dietrich, S. Zacharias

passive large area, diffusive

HELMHOLTZ **Soil moisture sensing** by cosmic ray induced showers M. Köhli, M. Schrön, U. Schmidt, P. Dietrich, S. Zacharias

ENVIRONMENTAL RESEARCH – UFZ

TERENO

HEIDELBERG UNIVERSITY

Base Spectrum 1.5×10⁻³ Neutron Flux 1.0×10⁻³ 0.5×10⁻³ 0 10⁻⁸ 10⁻⁶ 10⁻² 10⁰ 10² 10-4 104 Neutron Energy (MeV) soil

Soil moisture sensing by cosmic ray induced showers **M. Köhli**, M. Schrön, U. Schmidt, P. Dietrich, S. Zacharias

HELMHOLTZ

ENVIRONMENTAL RESEARCH – UFZ

TERENO

HEIDELBERG UNIVERSITY

3

Soil moisture sensing by cosmic ray induced showers **M. Köhli**, M. Schrön, U. Schmidt, P. Dietrich, S. Zacharias CENTRE FOR

ENVIRONMENTAL RESEARCH – UFZ

TERENO

HEIDELBERG UNIVERSITY

3

Soil moisture sensing by cosmic ray induced showers **M. Köhli**, M. Schrön, U. Schmidt, P. Dietrich, S. Zacharias

ENVIRONMENTAL RESEARCH – UFZ

TERENO

HEIDELBERG UNIVERSITY

Soil moisture sensing by cosmic ray induced showers **M. Köhli**, M. Schrön, U. Schmidt, P. Dietrich, S. Zacharias

Soil moisture sensing by cosmic ray induced showers **M. Köhli**, M. Schrön, U. Schmidt, P. Dietrich, S. Zacharias

Soil moisture sensing by cosmic ray induced showers **M. Köhli**, M. Schrön, U. Schmidt, P. Dietrich, S. Zacharias

HELMHOLTZ

ENVIRONMENTAL RESEARCH – UFZ

TERENO

HEIDELBERG UNIVERSITY

4

Soil moisture sensing by cosmic ray induced showers **M. Köhli**, M. Schrön, U. Schmidt, P. Dietrich, S. Zacharias

HELMHOLTZ

CENTRE FOR ENVIRONMENTAL RESEARCH - UFZ

TERENO

HEIDELBERG UNIVERSITY

Soil moisture sensing by cosmic ray induced showers **M. Köhli**, M. Schrön, U. Schmidt, P. Dietrich, S. Zacharias

HELMHOLTZ

CENTRE FOR ENVIRONMENTAL RESEARCH - UFZ

TERENO

HEIDELBERG UNIVERSITY

M. Köhli, M. Schrön, U. Schmidt, P. Dietrich, S. Zacharias

HEIDELBERG UNIVERSITY

TERENO

Soil moisture sensing by cosmic ray induced showers **M. Köhli**, M. Schrön, U. Schmidt, P. Dietrich, S. Zacharias

6

Coastal Transect

water

land

Soil moisture sensing by cosmic ray induced showers M. Köhli, M. Schrön, U. Schmidt, P. Dietrich, S. Zacharias

Costal Transect

Soil moisture sensing by cosmic ray induced showers **M. Köhli**, M. Schrön, U. Schmidt, P. Dietrich, S. Zacharias

HELMHOLTZ CENTRE FOR ENVIRONMENTAL RESEARCH - UFZ TERENO HEIDELBERG UNIVERSITY

7

Costal Transect

Soil moisture sensing by cosmic ray induced showers **M. Köhli**, M. Schrön, U. Schmidt, P. Dietrich, S. Zacharias

S S S TERENO HELMHOLTZ CENTRE FOR ENVIRONMENTAL RESEARCH - UFZ HEDELBERG UNIVERSITY

Costal Transect

Detected neutron origins (first contact to soil)
 Closest 86% of neutron origins for each 12° sector
 Neutron intensity for each 12° sector [arb. units]
 Footprint R_{se}(5g/m³, 5%)=210m for homogeneous soil

Soil moisture sensing by cosmic ray induced showers **M. Köhli**, M. Schrön, U. Schmidt, P. Dietrich, S. Zacharias

The Footprint

How far do reflected neutrons travel?

HEIDELBERG UNIVERSITY

8

The Footprint

How far do reflected neutrons travel?

The Footprint

How far do reflected neutrons travel?

Intensity $d\mathbf{N}/d\mathbf{r}$ of detected neutrons [arb. units], or radial weighting function W_r

Soil moisture sensing by cosmic ray induced showers **M. Köhli**, M. Schrön, U. Schmidt, P. Dietrich, S. Zacharias

HELMHOLTZ

ENVIRONMENTAL RESEARCH – UFZ

TERENO

HEIDELBERG UNIVERSITY

8

The Footprint – Analytical Description

How far do reflected neutrons travel?

Soil moisture sensing by cosmic ray induced showers **M. Köhli**, M. Schrön, U. Schmidt, P. Dietrich, S. Zacharias CENTRE FOR

TERENO

ENVIRONMENTAL RESEARCH – UFZ

> HEIDELBERG UNIVERSITY

Footprint Penetration Depth

Soil moisture sensing by cosmic ray induced showers **M. Köhli**, M. Schrön, U. Schmidt, P. Dietrich, S. Zacharias

The Cosmos Collaboration

a worldwide network of sensors

M. Zreda et atl. (2008)

Soil moisture sensing by cosmic ray induced showers **M. Köhli**, M. Schrön, U. Schmidt, P. Dietrich, S. Zacharias

Cosmic-Ray Neutrons

• Monte-Carlo neutron transport modelling methods

Soil moisture sensing by cosmic ray induced showers **M. Köhli**, M. Schrön, U. Schmidt, P. Dietrich, S. Zacharias

• Cosmic-Ray Neutrons can be used to measure soil moisture

averaged over several hectares and decimetres of depth

• Monte-Carlo neutron transport modelling methods

Soil moisture sensing by cosmic ray induced showers **M. Köhli**, M. Schrön, U. Schmidt, P. Dietrich, S. Zacharias

• Cosmic-Ray Neutrons can be used to measure soil moisture

averaged over several hectares and decimetres of depth

Monte-Carlo neutron transport modelling methods

lead to the understanding of this technology

Soil moisture sensing by cosmic ray induced showers **M. Köhli**, M. Schrön, U. Schmidt, P. Dietrich, S. Zacharias

Cosmic-Ray Neutrons can be used to measure soil moisture

averaged over several hectares and decimetres of depth

• Monte-Carlo neutron transport modelling methods

lead to the understanding of this technology

to be continued M. Schrön

UP 16.4

Soil moisture sensing by cosmic ray induced showers **M. Köhli**, M. Schrön, U. Schmidt, P. Dietrich, S. Zacharias

Footprint: Analytical Function

Soil moisture sensing by cosmic ray induced showers **M. Köhli**, M. Schrön, U. Schmidt, P. Dietrich, S. Zacharias

Footprint: Analytical Function

$$W_r(h,\theta) \approx \begin{cases} F_1 e^{-F_2 r} + F_3 e^{-F_4 r}, & r \le 50 \,\mathrm{m} \\ F_5 e^{-F_6 r} + F_7 e^{-F_8 r}, & r > 50 \,\mathrm{m} \end{cases}$$

$$F_{1} = p_{0} (1 + p_{3}h) \exp(-p_{1}\theta) + p_{2} (1 + p_{5}h) + p_{4}\theta,$$

$$F_{2} = \left((1 + p_{4}h) \exp\left(-\frac{p_{1}\theta}{1 + p_{6}\theta}\right) + p_{2}\right) (1 + p_{3}h),$$

$$F_{3} = p_{0} \exp(-p_{1}\theta) + p_{2} + p_{4}\theta + +p_{5}h,$$

$$F_{4} = p_{0} (1 + p_{3}h) \exp(-p_{1}\theta) + p_{2} + p_{4}\theta$$

$$F_{5} = p_{0} \left(0.02 + \frac{1}{p_{5}(p_{5} + p_{6}\theta + h)} \right) \\ \cdot (\theta - p_{4}) \exp(-p_{1}(\theta - p_{4})) + p_{2} (0.7 + h\theta p_{3}),$$

$$F_{6} = p_{0}(h - p_{1}) + p_{2}\theta,$$

$$F_{7} = \left((p_{0} + p_{4}h) \exp\left(-p_{1}\frac{\theta}{1 + p_{5}h + p_{6}\theta}\right) + p_{2} \right) \\ \cdot (2 + hp_{3}),$$

$$F_{8} = \left(p_{0} (1 + p_{6}h) \exp\left(-p_{1}\theta\left(1 + p_{4}\frac{h}{\theta}\right)\right) + p_{2} + p_{5}\theta \right) \\ \cdot (2 + p_{3}h).$$

F_1	$p_0 = 8735$	± 30
	$p_1 = 17.1758$	± 0.0873
	$p_2 = 11720$	± 21
	$p_3 = 0.00978$	± 0.00014
	$p_4 = -7045$	± 56
	$p_5 = 0.003632$	± 0.000026
F_2	$p_0 = -2.79257 \cdot 10^{-5}$	$\pm 1.52 \cdot 10^{-8}$
	$p_1 = 5.0399$	± 0.0134
	$p_2 = 2.85445 \cdot 10^{-5}$	$\pm 1.27 \cdot 10^{-8}$
	$p_3 = 0.002455$	$\pm 6 \cdot 10^{-5}$
	$p_4 = 6.8517 \cdot 10^{-8}$	$\pm 5.5 \cdot 10^{-10}$
	$p_6 = 9.2927$	± 0.0382
F_3	$p_0 = 5.4818 \cdot 10^{-5}$	$\pm 9 \cdot 10^{-7}$
	$p_1 = 15.921$	± 0.421
	$p_2 = 0.0006373$	$\pm 3.155 \cdot 10^{-7}$
	$p_4 = -5.99 \cdot 10^{-5}$	$\pm 1.3 \cdot 10^{-6}$
	$p_5 = 5.425 \cdot 10^{-7}$	$\pm 1.28 \cdot 10^{-8}$
F_4	$p_0 = 247970$	± 1695
	$p_1 = 17.63$	± 0.21
	$p_2 = 374655$	± 1098
	$p_3 = 0.00191$	± 0.00022
	$p_4 = -195725$	± 2840
F_5	$p_0 = -1383701$	± 143180
	$p_1 = 4.155$	± 0.574
	$p_2 = 5324$	± 543
	$p_3 = -0.00238$	± 0.00105
	$p_4 = 0.0156$	± 0.0014
	$p_5 = -0.130$	± 0.026
	$p_6 = 1520$	± 289
F_6	$p_0 = -1.543 \cdot 10^{-5}$	$\pm 1.6 \cdot 10^{-6}$
	$p_1 = 10.06$	± 0.94
	$p_2 = 1.807 \cdot 10^{-5}$	$\pm 1.6 \cdot 10^{-6}$
	$p_3 = 0.0011$	± 0.0007
	$p_4 = 8.81 \cdot 10^{-8}$	$\pm 3.9 \cdot 10^{-9}$
	$p_5 = 0.0405$	± 0.0049
	$p_6 = 20.24$	± 1.57
F_7	$p_0 = 6.031 \cdot 10^{-8}$	$\pm 4.37 \cdot 10^{-10}$
	$p_1 = -98.5$	± 0.93
	$p_2 = 1.0466 \cdot 10^{-6}$	$\pm 7.1 \cdot 10^{-8}$
F_6	$p_0 = 11747$	± 208
	$p_1 = 41.66$	± 1.7
	$p_2 = 4521$	± 49
	$p_3 = 0.01998$	± 0.00055
	$p_4 = -0.00604$	± 0.00034
	$p_5 = -2534$	± 127
	$p_6 = -0.00475$	± 0.00026

Soil moisture sensing by cosmic ray induced showers **M. Köhli**, M. Schrön, U. Schmidt, P. Dietrich, S. Zacharias

Soil moisture sensing by cosmic ray induced showers **M. Köhli**, M. Schrön, U. Schmidt, P. Dietrich, S. Zacharias

