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Zusammenfassung:

Verschiedene Theorien, die die Physik jenseits des Standardmodells beschreiben, sagen
neue Phänomene bei derart hohen Energien vorher, die in Beschleunigerexperimenten
nicht zu erreichen sind. Als Alternative werden bestimmte Größen bei niedrigen Ener-
gien sehr präzise gemessen und mit deren Standardmodellvorhersagen verglichen. Im
Rahmen dieser Dissertation werden zwei experimentelle Herangehensweisen behandelt:
Zum einen würden Effekte der Quantengravitation auf der Planck-Skala, obwohl stark
unterdrückt, noch bei niedrigen Energien Auswirkungen haben. Dies wird mit Tests
der CPT- und Lorentzinvarianz-verletzenden Kopplung des (gebundenen) Neutron-
spins an ein hypothetisches Hintergrundfeld untersucht. Zweitens tragen zusätzliche
Quellen von CP-Verletzung zu einem permanenten elektrischen Dipolmoment (EDM)
bei, das mehrere Größenordnungen über der Standardmodellvorhersage liegen kann.
Genaue Messungen des EDMs von 129Xe können darüber wichtige Aufschlüsse ge-
ben. Der experimentelle Ansatz beruht auf der Frequenzmessung von frei präzedieren-
den, kernspinpolarisierten 3He- und 129Xe-Atomen in einem homogenen Magnetfeld
(400nT). Als Detektoren werden rauscharme LTC SQUIDs eingesetzt. Diese Disserta-
tion behandelt den experimentellen Aufbau und die Datenauswertung zur Suche nach
einer CPT- und Lorentzinvarianz-verletzenden Kopplung der 3He- und 129Xe-Spins an
ein Hintergrundfeld. Aus den Daten konnte eine obere Grenze von b̃n⊥ < 8.4 · 10−34

GeV (68% C.L.) für die äquatoriale Komponente des Hintergrundfeldes bestimmt wer-
den. Des Weiteren werden die Vorbereitungen und technischen Entwicklungen für die
129Xe-EDM-Messungen beschrieben.

Abstract:

Effects of theories beyond the Standard Model would become directly apparent at high
energies, which are probably out of reach for colliders. As an alternative, low-energy
high-precision measurements of quantities are performed, looking for deviations from
the Standard Model (SM) predictions. In this case: Firstly, a small amount of the large
effects of quantum gravity at the Planck scale should remain at low energies, which
is tested by looking for Lorentz invariance violation in the neutron sector. Secondly,
new sources of CP-violation would cause permanent electric dipole moments (EDMs)
of particles that are many orders of magnitude larger than the EDMs predicted by
the SM. The experimental approach is to measure the free precession of nuclear spin
polarized 3He and 129Xe atoms in a homogeneous magnetic guiding field of about
400 nT using LTC SQUIDs as low-noise magnetic flux detectors. This dissertation
reports on the search for a CPT and Lorentz invariance violating coupling of the
3He and 129Xe nuclear spins to posited background fields. An upper limit on the
equatorial component of the background field interacting with the spin of the bound
neutron b̃n⊥ < 8.4 · 10−34 GeV (68% C.L.) was obtained. Furthermore, the technical
developments and preparations for measurements of the 129Xe EDM are described.
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1 Introduction and Theoretical Motivation

The Standard Model (SM) of particle physics in combination with the theory of Gen-
eral Relativity (GR) provides an excellent description of nature and is successful to a
great extent. However, there are a number of theoretical issues and as yet unexplained
experimental observations, which have led to the general understanding that theoret-
ical developments are needed to overcome the deficiencies of the SM and GR, usually
referred to as "Physics beyond the Standard Model".
In the following sections, a range of theoretical problems with the SM and GR, as well
as experimental observations that cannot be explained within the SM, are presented.
Possible theoretical solutions are outlined. Then I will discuss the ways in which the
low-energy, high-precision experiments which are presented in this dissertation can help
us decide which theory is currently the best description of nature - or shed light on as
yet undiscovered properties of nature.

1.1 Unsolved Problems in the Present Description of
Nature

Theoretical problems
Our present description of gravity is based on Albert Einstein’s theory of General Rel-
ativity (GR), which is formulated within the framework of classical (non-quantum)
physics. GR models gravity as a curvature of space-time. The curvature is directly
related to the mass (or energy) of matter or radiation. On the other hand, the elec-
tromagnetic, weak, and strong interactions are described by means of quantum field
theories, a radically different formalism for describing physical phenomena using parti-
cle fields embedded in the flat space-time of special relativity. Thus GR and the SM
must be regarded as incompatible. The first approaches in combining these theories
that come into mind - like treating gravity as another particle field - lead immediately
to mathematical problems (renormalization problem).
As Einstein’s theory is not a quantum theory, it is to be expected that it will ultimately
be replaced by a more fundamental theory that will hold at the quantum level. Possible
quantum gravity theories are string theory and loop quantum gravity, for example. At
a certain scale, gravity and quantum physics are expected to meet. An upper limit for
this scale is the Planck scale, with the Planck mass mP ≈ 1019 GeV.
Some quantum gravity theories, such as string theory, are intended to unify gravity with
the other fundamental interactions, whereas others, such as loop quantum gravity, are
constructed to quantize the gravitational field while keeping gravity separate from the
other interactions. A theory of quantum gravity which also unifies all known interac-
tions, is usually referred to as a "theory of everything" (TOE).
One of the difficulties of quantum gravity is its experimental accessibility. Quantum
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1 Introduction and Theoretical Motivation

gravitational effects are only expected to become apparent near the Planck scale, a
scale far higher in energy than that which is accessible to particle accelerators at the
moment (and most likely in the foreseeable future). Therefore, one must think about
experimental alternatives.

The Strong CP problem is the as yet unsolved question of why quantum chromody-
namics (QCD) does not violate CP symmetry, although the underlying theory allows
such a violation: There are natural terms in the QCD Lagrangian with the CP symme-
try breaking parameter Θ. One would assume that the angle Θ would naturally be of
order one. However, there are no experimental results that indicate any CP violation in
the QCD sector. The particular value of Θ that must be very close to zero (experimental
result from neutron electric dipole moment measurements: Θ < 10−10 ) is an example
of a fine-tuning problem.
There are several proposed solutions to the Strong CP problem: Firstly, the CP sym-
metry breaking parameter Θ would become unobservable if at least one of the quarks
were massless. However, there is no experimental evidence that any of the quarks is
massless, and thus this mechanism seems very unlikely.
Secondly, the Peccei-Quinn theory offers an alternative solution to the Strong CP prob-
lem. An additional global U(1) symmetry (referred to as the PQ symmetry) is intro-
duced into the SM QCD Lagrangian and is subsequently broken both spontaneously
and explicitly. The breaking of the PQ symmetry gives rise to a pseudoscalar Nambu-
Goldstone boson, known as the Axion, which causes Θ to become effectively zero.

Unexplained experimental observations
One of the prominent unsolved questions in physics today is related to the origin of
matter: Why is our world made of matter, and why is there no relevant amount of
anti-matter in the observable Universe? The observed Matter-Antimatter Asymmetry,
or Baryon Asymmetry A =

nB−nB
nγ

≈ 10−10 (with the density of matter nB, the
density of anti-matter nB and the photon density nγ) is much larger than the expected
asymmetry of A ≈ 10−18 from baryogenesis models based on the SM.
To generate a Baryon Asymmetry, three conditions (Sakharov conditions) must be sat-
isfied, if one assumes CPT conservation [1]:
There must be:

• a Baryon number violating process

• a C-symmetry and CP-symmetry violating process

• a system out of thermal equilibrium.

The CP-violating processes in the SM in the weak interaction are far too small to explain
the observed Baryon Asymmetry. As a consequence, the search for additional sources
of CP violation is essential.
Alternatively, the observed baryon asymmetry can be explained, if CPT symmetry is
not conserved and if there are processes that violate baryon-number conservation (in
this case there is no need for a system out of thermal equilibrium). As CPT invariance is
closely linked to Lorentz invariance via the CPT theorem [2, 3], it makes sense to search
for Lorentz invariance violations to put stringent limits on a violation of CPT symmetry.

10



1.2 Lorentz Invariance Violation

Another unsolved question of great importance in contemporary physics is the iden-
tity of Dark Matter. Dark matter neither emits nor absorbs electromagnetic radiation
at a measurable level, but the existence of dark matter is generally accepted on the basis
of overwhelming astrophysical evidence: the existence and properties of dark matter are
inferred from its gravitational effects on visible matter, radiation, and the large-scale
structure of the universe. Much of the evidence for dark matter comes from the ob-
servation of the motions of galaxies and from observations of gravitational lensing of
galaxy clusters. This allows us to directly estimate the gravitational masses of galaxies,
clusters of galaxies and the entire universe. These masses are significantly higher than
the mass of the visible matter these objects contain. According to the data of the Planck
spacecraft mission, the universe contains 4.9% baryonic matter, 26.8% dark matter and
68.3% dark energy [4]. Among others, the Axion which has been mentioned above is a
possible dark matter candidate.

1.2 Lorentz Invariance Violation

The negative results of the famous Michelson-Morley experiment in 1887 [6], which
looked for an anisotropy in the speed of light, finally led to the formulation of Einstein’s
theory of special relativity. This theory is based on the postulate that the laws of physics
are invariant under Lorentz transformations (boosts and rotations). Lorentz invariance
has become one of the fundamental symmetries in modern physics since then. Modern
Michelson-Morley type experiments improved the limits by a factor 4000.
Over the last few decades there has been increasing interest in tests of Lorentz invariance
for the following reasons:
As stated above, the effects of a theory of quantum gravity would appear at the Planck
scale. If Lorentz invariance is violated by quantum gravity, it should be strongly violated
at mP ≈ 1019 GeV. Experimental investigations at the Planck scale are beyond our
reach, as current colliders work at the TeV scale and the highest energies found in
particles of cosmic radiation are in the order of 1011 GeV. However, it is very likely that
a small amount of Lorentz invariance violation remains at low energies. As an alternative
to high-energy experiments, one can search for tiny Planck-suppressed effects that may
be visible in high-precision experiments at low energies. It makes sense to look for signs
of Lorentz invariance violation as they cannot be explained within the SM or GR and
thus will be a clear indication of new physics. There are mechanisms in both string
theory and loop quantum gravity that can lead to Lorentz invariance violation. Though
these theories do not presently give verifiable predictions at a quantifiable level at low
energies, they motivate experimental searches in this direction.
Furthermore, by putting limits on Lorentz invariance violation, one automatically puts
limits on CPT violation, as a CPT violation would immediately lead to a violation of
Lorentz invariance. This was shown by O. Greenberg [30]. In our current understanding
of nature, CPT symmetry and Lorentz invariance are fundamental properties, and thus
both must be thoroughly tested in experiments.
An approach that helps to bridge the gap between theories that do not give definite
testable predictions at the moment (although they motivate searches in this direction)
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1 Introduction and Theoretical Motivation

on the one side, and experiments on the other side, is effective field theory. Every
reasonable effective field theory must:

• contain the SM

• contain GR

• contain any higher couplings between the SM and GR

• be invariant under observer Lorentz transformation. (The results of an experiment
are not dependent on the chosen coordinate system of the observer.)

In contrast to the observer Lorentz invariance, violations of particle Lorentz invariance
are allowed, meaning that physics may change as an individual particle field is rotated
or boosted while the coordinate system remains fixed. The general effective field theory
that has all of the properties listed above is called the Standard Model Extension.

1.2.1 The Standard Model Extension

The theoretical framework presented by A. Kostelecký and colleagues parametrizes the
general treatment of CPT and Lorentz invariance violating effects in a Standard Model
Extension (SME) [26–28]. The SME framework was conceived to facilitate experimen-
tal investigations of Lorentz and CPT symmetry, given the theoretical motivation for
violation of these symmetries. Although Lorentz invariance violating interactions are
motivated by models such as string theory [28, 31], loop quantum gravity [32–35], etc.,
the low-energy effective action appearing in the SME is independent of the underlying
theory.
The SME lagrange density is constructed to contain all possible terms that violate
Lorentz invariance. For practical purposes, in low-energy experiments one usually takes
a subset with a finite number of terms, including the leading order effects in Lorentz
invariance violation. One special subset, known as the minimal Standard Model
Extension, is restricted to power-counting renormalizable and gauge-invariant terms.
The Lorentz invariance violating coefficients in the minimal SME have been widely used
by experimentalists as the standard for reporting bounds on Lorentz invariance viola-
tion and comparing experimental sensitivity. Since most of the low-energy experiments
involve only electromagnetic interactions between charged particles and photons (effects
involving coupling to a gravitational field are expected to be smaller), it often suffices
to use a minimal QED sector of the SME.
The Lagrangian of the QED limit of the minimal SME can be written as

LQED = L0 + Lint . (1.1)

The Lagrangian L0 contains the conventional Lorentz invariant terms in QED describing
photons, massive charged fermions, and their usual couplings, while Lint contains the
Lorentz invariance violating interactions. Since the minimal SME in flat spacetime is
restricted to the renormalizable and gauge-invariant terms in the full SME, the QED
sector interactions in Lint have a finite number of terms. For the case of photons and a
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1.2 Lorentz Invariance Violation

single fermion species ψ, the Lorentz invariance violating terms are given by

Lint = −aµψ̄γµψ − bµψ̄γ5γ
µψ + icµνψ̄γ

µDνψ

+idµνψ̄γ5γ
µDνψ − 1

2Hµνψ̄σ
µνψ

−1

4
(kF )κλµνF

κλFµν +
1

2
(kAF )κεκλµνA

λFµν , (1.2)

with iDµ := i∂µ − qAµ. The terms with coefficients aµ, bµ and (kAF )µ are odd under
CPT, while those with Hµν , cµν , dµν , and (kF )κλµν preserve CPT. All seven terms vio-
late Lorentz invariance. In general, superscript labels will be added to these parameters
to denote the (fundamental) particle species [27–29].
Lagrangian terms of the same form are expected to describe composite particles - in
particular protons and neutrons - in QED systems as well. Then the SME coefficients
represent composites stemming from quark and gluon interactions. Since QED and
its relativistic quantum-mechanical limits describe proton and neutron electromagnetic
interactions in atoms in excellent agreement with experiments, defining terms involv-
ing composite SME parameters for protons and neutrons is a reasonable extension of
the theory. The QED extension of the SME treats protons and neutrons as the basic
constituents of the theory. The Lagrangian Lint then contains the most general set of
Lorentz invariance violating interactions in this context. The new parameters of these
terms are denoted using tildes.
For example, the parameters that are important for this work are the b̃ coefficients.
They are defined as

b̃wJ := bwJ −mdwJ,0 − 1
2εJklH

w
kl (with J = X, Y, Z ; w = e, p, n) (1.3)

for the electron, proton, and neutron, respectively. Finally, the leading-order effects of
the interactions can be determined. It suffices to use a non-relativistic description of a
potential V for the particles involved given by

V = −b̃w · σw (with w = e, p, n) . (1.4)

This can be interpreted as a coupling of the electron, proton, or neutron spin σw to a
hypothetical background field b̃w (see Fig. 1.1).
The SME coefficients are expected to be fixed with respect to a nonrotating coordinate
frame, e.g. with respect to distant stars. The suitable choice of a coordinate frame fixing
the directions X, Y , Z is a sun-centered frame using celestial equatorial coordinates.
Further information on the coordinate systems and transformations that are used in this
work can be found in Appendix A.1 on page 127.
Finally, the experimental task is to search for a coupling of the electron, proton, or
neutron spin σw to a hypothetical background field b̃w.

1.2.2 Experimental Searches for Lorentz Invariance Violation

There is a huge variety of possible tests of Lorentz invariance, including astrophysical
observations (e. g. vacuum birefringence), and experiments on earth using Penning
traps or cavities (like the Michelson-Morley experiment). Thus, the following presen-
tation is narrowed down to experiments that measure the SME parameters b̃wJ with
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1 Introduction and Theoretical Motivation

Z 

σ 

𝒃 ~ 

Figure 1.1: Illustration of the coupling V = −b̃wJ · σwJ . The hypothetical background
field b̃wJ is fixed with respect to distant stars, whereas the spins rotate with
the Earth.

methods that are similar to the 3He-129Xe comagnetometer in this work.
Up until now, experiments were consistent with Lorentz invariance and resulted in the
determination of upper limits on the SME coefficients. Typical experiments, which are
briefly described here, look for couplings between the hypothetical background fields and
particle properties, such as spin (or propagation direction). As earthbound experiments
are unavoidably rotating and revolving relative to the Sun-centered frame, a coupling
would manifest in an annual and sidereal variation of a specific observable (usually the
energy levels of particles or atoms). Since the translational motion of the Earth around
the Sun is non-relativistic, annual variations are typically suppressed by a factor 10−4.
Thus sidereal variations are the leading time-dependent effect to look for in experimen-
tal data.

Hughes-Drever type experiments
Hughes et al. [9] and Drever et al. [10] independently measured the Larmor frequency
of 7Li, and looked for sidereal frequency changes as the laboratory frame rotated with
respect to distant stars.
Hughes–Drever type experiments, sometimes referred to as "clock comparison exper-
iments" (but it has to be pointed out, that this is not a measurement of time di-
lation), in general are spectroscopic tests of the isotropy of mass and space. As in
Michelson–Morley experiments, they test the existence of a preferred frame of reference.
However, unlike Michelson–Morley type experiments, Hughes–Drever experiments test
the isotropy of the interactions of matter itself. The accuracy that can be achieved
makes these experiments one of the most accurate confirmations of relativity. Searches
for an anomalous spin coupling to a posited relic background field that permeates the
universe, have been performed with electron and nuclear spins with increasing sensitiv-
ity [11, 12, 14–22, 24, 25]. A list of the best limits on spin-anisotropy can be found in
Tab. 1.1.
The common principle of modern Hughes-Drever type experiments is the use of at least
two different systems which are radiating on their Zeemann transitions. A coupling of

14



1.2 Lorentz Invariance Violation

Figure 1.2: A drawing of the spin pendulum as it was used by the Eöt-Wash group. The
light green and darker blue parts are made of Alnico and SmCo5, respec-
tively. Upper left: Top view of a single puck; the effective spin polarization
points to the right. Lower right: The assembled pendulum with the mag-
netic shield shown cut away to reveal the four pucks inside. Two of the four
mirrors (light gold), that are used to monitor the pendulum twist, are promi-
nent. Arrows with filled heads show the relative densities and directions of
the electron spins, open-headed arrows show the directions of the magnetic
field. Source: [22].

the spins to a posited relic background field would change the Larmor frequencies.

Spin-polarized torsion balance
With the spin-polarized torsion balance of the Eöt-wash group at the University of
Washington, new interactions that couple to the electron spin have been investigated
[22]. Among others, upper bounds for the couplings of the electron spin to hypothet-
ical background fields as described by the SME could be derived (see Tab. 1.1). The
central part of the experiment is a spin pendulum (see Fig. 1.2) that contains a high
number (in the order of 1023) of polarized electrons, while having a negligible external
magnetic moment and a high gravitational symmetry. The spin pendulum consists of
four octagonal "pucks". One half of each puck is made of Alnico 5 (a conventional soft
ferromagnet in which the magnetic field is almost entirely created by electron spins)
and the other half is made of SmCo5, a hard rare-earth magnet in which the orbital
magnetic moment of the electrons in the Sm3+ ion nearly cancels the spin magnetic
moment. Having this spin pendulum with aligned electron spins and no net magnetic
moment, the experiment then makes use of a substantially improved version of the Eöt-
Wash rotating torsion balance that was used earlier for tests of the equivalence principle.
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1 Introduction and Theoretical Motivation

Briefly, a vacuum vessel containing the torsion pendulum on a tungsten suspension fiber
and its associated optical readout system was rotated uniformly on a turntable about a
vertical axis. Magnetic fields and gradients were reduced by active and passive shielding
(a stationary set of Helmholtz coils and four layers of co-rotating mu-metal shielding).
Gravity gradients were canceled with a precision that was limited by the fluctuating
water content of the ground outside the laboratory. The turntable stood on thermally
adjustable feet that kept its rotation axis in a vertical position (better than 10 nrad).
Over the course of the experiment the turntable rotation frequency f was set to dif-
ferent values (between 3

29f0 and 3
20f0, where f0 is the free-oscillation frequency of the

pendulum). The pendulum twist angle Θ was recorded as a function of the turntable
angle Φ by means of the optical readout system. This signal was processed to extract
the torque. A Lorentz invariance violating coupling of the type V = −σ · b̃e would cause
a orientation dependent torque, and thus, a signal Θ(Φ) ∝ sin(Φ). Upper bounds on
such a signal in the data can finally be used to extract the limits on Lorentz invariance
violation, |b̃e| < 10−31 GeV, thereby largely ruling out effects in first order Planck scale
suppression (see Tab. 1.1).
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1.2 Lorentz Invariance Violation
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1 Introduction and Theoretical Motivation

d I 

P T 

d I d I 

Figure 1.3: A permanent electric dipole moment of a particle violates both P and T
symmetries and thus violates CP symmetry (assuming CPT conservation).
Under parity transformation P, the electric dipole moment d changes sign,
whereas the spin I stays unchanged. Under time reversal T, d stays un-
changed, but I changes sign.

1.3 CP Violation and Permanent Electric Dipole Moments
of Particles

Until 1956 it was assumed that all physical processes are invariant under time reversal
T, charge conjugation C and spatial or parity inversion P. These symmetries were con-
sidered as fundamental properties and every allowed process would transform into an
allowed process by applying one of the T, C, or P transformations. Early tests showed
that parity was conserved in gravity and in the electromagnetic and strong interaction.
Then, in 1956, the famous Wu experiment used the beta decay of polarized 60Co to
show that the weak interaction violates P symmetry to the maximum extent. Only
the left-handed components of particles (e.g. left-handed neutrinos) and right-handed
components of antiparticles (e.g. right-handed anti-neutrinos) participate in weak in-
teractions. Parity transformation leads to particles that do not exist (e.g. right-handed
neutrinos or left-handed anti-neutrinos). The same argument is valid for charge con-
jugation C (e.g. transforming left-handed neutrinos into left-handed anti-neutrinos).
Therefore, the separate C and P symmetries are violated in the weak interaction of the
SM. However, the combination of both transformations, the CP transformation, leads
to particles that do exist (e. g. transforming a left-handed neutrino into a right-handed
anti-neutrino). Thus, in the following years, it was assumed (or hoped) that CP sym-
metry is still conserved.
In 1964, a violation of CP symmetry was found in the decay of neutral Kaons and later
in the B-meson system. This CP violation is small (compared to the maximal violation
of parity) and a property of the weak interaction. So far, CP violation has only been
observed in the weak interaction. The CP violation is well described in the SM as a
complex phase factor δ. This phase factor is one of the four free parameters of the
Cabibbo-Kobayashi-Maskawa (CKM) matrix, which describes the quark-mixing. δ only
causes CP violation in flavor-changing processes, and all CP-violating processes that are
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1.3 CP Violation and Permanent Electric Dipole Moments of Particles

known today occur through quark interaction involving that phase.
Nevertheless, QCD also allows CP violation in the strong interaction, with the term
parameterized by Θ, which was found to be Θ < 10−10 by experiments measuring the
neutron EDM as described above (strong CP problem and the axion).
However, there are strong arguments, that CPT symmetry as a result of the simultane-
ous combination of the three transformations C, P, and T is conserved. This is based on
the CPT theorem of Pauli and Lüders [3], which follows from fundamental principles:
causality, locality, and Lorentz invariance. The connection between Lorentz invariance
and CPT has been mentioned in the previous section.
Because a part of this dissertation addresses the experimental efforts to measure the
EDM of 129Xe, the connection between CP violation and permanent electric dipole mo-
ments will be described below.
A permanent EDM of a fundamental or composite particle must be aligned parallel to
the Spin I, as the spin is the only available vector for an eigenstate of the isolated
particle. Otherwise, there would have to be a further quantum number that describes
the direction of the EDM (parallel or anti-parallel to the spin), and this would lead to
additional states that obviously do not exist (Pauli principle). Therefore:

d = d · I
|I|

. (1.5)

If one now applies P (inverting all spatial coordinates), the electric dipole moment d
changes sign, whereas the spin I stays unchanged. Furthermore, under time reversal
T, d stays unchanged, but I changes sign (see Fig. 1.3). Assuming CPT symmetry
conservation, this is equivalent to CP symmetry violation.
As such, an EDM is an excellent candidate to look for new sources of CP violation, with
its connection to the observed matter-antimatter asymmetry in our universe, as ex-
plained above. Furthermore, the Standard Model predictions for EDMs are very small.
They occur only at the four-loop or higher level, stemming from the CP violation in
the weak interaction. For example, since the complex phase factor of the CKM matrix
only enters in matrix elements where heavier quarks are involved, SM contributions to
particle EDMs - in particular, the neutron EDM - are of second order in the weak inter-
action coupling constants, and hence are very small: of order dn ≈ 10−31 to 10−33 ecm.
The SM prediction for the electron EDM is even smaller: de ≈ 10−37 to 10−40 ecm. A
significantly larger EDM would be a clear indication of physics beyond the SM.
Many experiments have been and are currently being conducted to measure the EDMs
of several particles. All of these measurements are consistent with a vanishing dipole
moment. However, these results can be used to extract limits on CP symmetry violation
that a theoretical model may permit. For example, in supersymmetric models (SUSY),
by doubling the number of fundamental particles, quite a few new parameters with
additional CP-violating phases are introduced that contribute to EDMs. In the sim-
plest SUSY model (minimal supersymmetric standard model), with only two additional
CP-violating phases, the natural size of EDMs would be in the order of |dn| = 10−25

to 10−28 ecm. Current experimental results show such large EDMs to be unlikely (see
below), which presents a serious challenge for SUSY.
In principle, the EDMs of different systems should be measured to distinguish between
the various sources of CP violation that can be intrinsic leptonic, intrinsic hadronic,
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resulting from interactions in composite particles, or CP-odd forces between the con-
stituents in atoms, for example (see Fig. 1.4). In some composite systems, such as
molecules and atoms, internal fields can significantly enhance or attenuate the visibility
of EDMs, which must also be taken into account. The highest sensitivity so far could be
reached in measurements of the neutron, the 129Xe atom, the diamagnetic 199Hg atom
(predominantly sensitive to the nuclear EDM), and the ThO molecule (predominantly
sensitive to the electron EDM).

1.3.1 The EDM of 129Xe

This experiment, using a 3He-129Xe comagnetometer, is an attempt to measure the
atomic EDM of 129Xe. Thus the individual sources of EDMs which contribute to the
total atomic EDM will be presented.
An atomic EDM of a composite particle like the 129Xe atom would arise from intrinsic
EDMs of the elementary fermions or from the interaction between these constituents.
The various theories like SUSY, Left-Right Symmetry, Technicolor, and Multi-Higgs,
which incorporate new sources of CP violation, should give direct predictions concern-
ing the value of EDMs of the fundamental particles, especially the electron EDM de,
and the quark EDMs, as well as possible CP-violating quark-lepton interactions and
"ChromoEDMs" (stemming from the quark-quark interaction). Then extensive QCD
calculation is needed to get to the resulting nucleon EDMs (neutron EDM dn) and CP-
violating nucleon-nucleon interactions. Afterwards, nuclear models must be applied to
calculate the resulting nuclear EDM. Finally, the atomic EDM can be determined us-
ing atomic theory incorporating the nuclear EDM, the electron EDM, and CP-violating
quark-lepton forces.
On the electron and nucleon level, the different contributions to the atomic EDM can
be categorized by the different sources:

• an intrinsic EDM of the electron. This effect is large in atoms with an unpaired
electron such as Rb. It is quite small for atoms with closed electron shells like Hg
and Xe in their ground state.

• CP- and P-violating electron-nucleon interactions. Three relativistically invari-
ant forms for these interactions exist: tensor-pseudotensor interactions with a
dimensionless parameter CT measuring the strength of this interaction, scalar-
pseudoscalar interactions with the parameter CSP , and pseudoscalar-scalar inter-
actions with the parameter CPS .

• an EDM of the neutron or proton, or CP- and P-violating nucleon-nucleon interac-
tions with a dimensionless parameter η describing the strength of this interaction.

As the calculation of the final atomic EDM involves a lot of steps with theoretical
uncertainties (nuclear models), the relation between the fundamental sources of CP
violation and the atomic EDM has large uncertainties. The 129Xe-EDM can be expressed
as a linear combination of the various sources with numeric coefficients that are known
with a precision of about 30% [62, 63]:

dXe = −10−3de + 5 · 10−21ecm · CT
+5 · 10−23ecm · CSP + 1 · 10−23ecm · CPS + 4.7 · 10−26ecm · η (1.6)
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Nuclear theory 
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Nuclear Atomic Molecular Energy scale 
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Figure 1.4: The various theories like SUSY, Left-Right Symmetry, Technicolor, Multi-
Higgs that incorporate new sources of CP violation should give direct predic-
tions concerning the value of EDMs of the fundamental particles, especially
the electron EDM de, the quark EDMs as well as possible CP-violating
quark-lepton interactions and "ChromoEDMs" (stemming from the quark-
quark interaction). Then extensive QCD calculation is needed to get to
the resulting nucleon EDMs (neutron EDM dn) and CP-violating nucleon-
nucleon interactions. Afterwards nuclear models have to be applied to calcu-
late the resulting nuclear EDM. Finally, the atomic EDM can be determined
using atomic theory incorporating the nuclear EDM, the electron EDM and
CP-violating quark-lepton forces. For other particles like the TlF molecule
or the neutron much less model dependent assumptions are needed.

1.3.2 Experimental Searches for EDMs of Particles

All experiments that search for an EDM have in common that they use neutral particles
with a non-zero total angular momentum F , preferably with F = 1

2 . Polarized particles
of this type are placed in a magnetic field, and the Larmor precession frequency is
measured. By applying an additional electric field E parallel or anti-parallel, an EDM
would result in a shift δωp = +2d ·E/h̄ or δωp = −2d ·E/h̄ of the precession frequency,
respectively. The difference ωp−ωa in precession frequencies for these two configurations
can be measured, and finally the EDM can be calculated (assuming that the magnetic
field stays constant):

d =
h̄ (δωp − δωa)

4E
=
h̄ (ωp − ωa)

4E
(1.7)
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Figure 1.5: Sketch of the experimental set-up to measure the neutron EDM taken from
the original publication by J. Smith, E. Purcell and N. Ramsey [68].
A: magnetized iron mirror polarizer, B: the pole faces of the homogeneous
field magnet, C and C’: rf-coils, A’: analyzer and D: detector.

A detailed discussion of the measurement principle will be given in the section "Theory
of operation of the 3He-129Xe comagnetometer" on page 29 and the following pages.

The electron EDM via molecular EDMs

The EDM of the electron can be measured in heavy neutral atoms or molecules with
exceptionally high internal effective electric fields. Experiments using thallium atoms
found |de| < 1.6 · 10−27 ecm [64], and other experiments using ytterbium fluoride (YbF)
molecules found |de| < 1.1 · 10−27 ecm [65, 66].
The best experimental limit on the electron EDM de was published by the ACME
collaboration [67] in the year 2014. They used the polar molecule thorium monoxide
(ThO) and could take advantage of the high internal electric field Eeff ≈ 84 GV/cm.
They measured de = (−2.1± 3.7stat ± 2.5syst) ·10−29 ecm. This corresponds to an upper
limit of |de| < 8.7 · 10−29 ecm (90% confidence level).
The experimental method will be shortly described: To measure de, the ACME col-
laboration performed a spin precession measurement on collimated pulses of 232Th16O
molecules from a cryogenic buffer gas beam source. The molecules enter a magneti-
cally shielded region and pass between parallel plates that generate a laboratory electric
field. An aligned spin state is prepared via optical pumping and state preparation lasers.
Parallel electric and magnetic fields exert torques on the electric and magnetic dipole
moments, causing the spin vector to precess. The precession angle is measured by a
laser with rapidly alternating linear polarizations. Then the resulting fluorescence light
is collected and detected with photomultiplier tubes. A change in this angle, as the
electric field is reversed, is proportional to de.
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The neutron EDM
Measurements of the neutron EDM began in the 1950s and were first carried out by
J. Smith, E. Purcell and N. Ramsey [68], applying a magnetic resonance method (see
Fig. 1.5). They used a polarized thermal neutron beam at the Oak Ridge reactor.
The neutron beam was polarized by total reflection from a polished, magnetized iron
mirror, and then passed into a region of a homogeneous magnetic field. A radio fre-
quency magnetic field tuned to the mean Larmor frequency was applied by a small coil.
The neutron beam then traveled through a region with a constant electric field and then
went through a second rf-coil. Finally, the neutrons were analyzed by an inhomogeneous
magnetic field (spatially separating the two spin states) and detected by a BF3 neutron
counter. An electric field changes the Larmor frequency by dn ·E, and thus, would shift
the spin echo point (i.e. the frequency with the maximal count rate or transmission).
The result was by that time remarkably precise: dn = (−0.1 ± 2.4) · 10−20 ecm, which
corresponds to an upper limit of dn < 5 · 10−20 ecm (95% confidence level).
Subsequent measurements using neutron beams could improve the limits on the neu-
tron EDM resulting in |dn| < 3 · 10−24 ecm, but soon systematic uncertainties became
dominant (mostly due to the motional magnetic field B = v × E/c2 that the moving
particle sees in an electric field; see p. 118) over statistical uncertainties.
Later experiments could overcome this limitation by using stored ultracold neutrons
that had a second advantage: the interaction time of the particles with the electric field
could be increased by a factor 104. The best limit up to date on the neutron EDM
was measured at the Institut Laue-Langevin (published in the year 2006) resulting in
|dn| < 2.9 · 10−26 ecm [69].
There is an ongoing interest in the neutron EDM and a lot of experiments in this field are
currently planned or in the set-up phase (at the ILL, PSI, FRMII, SNS and TRIUMF)
aiming at the 10−28 ecm limit.

The 199Hg EDM
The most sensitive measurements to date searching for EDMs in diamagnetic atoms have
been performed by Griffith et al. at the University of Washington on 199Hg atoms [70–
72]. The 199Hg atom has a 1S0 electronic ground state and nuclear spin 1/2. An EDM
of the atom in the ground state would arise from CP violation in the nucleus. The
experimental set-up uses a stack of four cells made from high-purity fused silica in a
common magnetic field (B ≈ 22 µT) (see Fig. 1.6). The cells contain enriched 199Hg
(92%). The middle two cells have oppositely directed electric fields resulting in EDM-
sensitive frequency shifts of opposite sign. The outer two cells are enclosed by the high
voltage electrodes, and thus, are in a zero electric field and consequently free of EDM
effects. The outer cells are used to reduce magnetic field noise and to provide checks for
magnetic field drifts that might be correlated with the applied high voltage (and leakage
currents). The 199Hg vapor inside the cells is polarized by means of optical pumping
using a 254 nm laser system. After the pumping process, the same laser system is used
to monitor the precessing magnetization that decays with a time constant T2 ≈ 100
to 200 s. Finally the Larmor frequencies are extracted and compared with respect to
different electric field settings (as explained before). The 199Hg EDM was found to be
consistent with zero: dHg = (0.49± 1.29stat ± 0.76syst) · 10−29 ecm. An upper limit was
extracted: dHg < 3.1 · 10−29 ecm (95% confidence level).
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Figure 1.6: Sketch of the experimental set-up to measure the 199Hg EDM taken from
the publication by W. C. Griffith [70].

The 129Xe EDM
The most precise measurements of the 129Xe EDM so far have been performed at the
University of Michigan by M. A. Rosenberry and T. E. Chupp in the year 2000 [73, 74].
They used a sample of co-located nuclear polarized 3He and 129Xe gas, and thereby
constructed a comagnetometer to effectively suppress magnetic field drifts and the cor-
responding systematic limitations. The principle of comagnetometry is also applied in
the measurements that are the topic of this dissertation. Therefore this principle is
discussed in detail in Chapter 2 on page 32.
The experimental set-up at the University of Michigan is sketched in Fig. 1.7. The
central component is a vessel made of borosilicate glass containing the 3He and 129Xe
atoms besides N2 as a buffer gas, and a small amount of rubidium that is used to polar-
ize both the 3He and 129Xe atoms by Spin Exchange Optical Pumping (SEOP, see page
35). This vessel consists of a spherical pump cell and a cylindrical maser cell, which
are connected by a transfer tube. The atoms are nuclear-spin polarized in the pump
cell and then diffuse through the transfer tube into the maser cell. The maser cell has
molybdenum electrodes to generate the electric field (max. 3.6 kV/cm). The magnetic
guiding field (315 µT) is generated by a solenoid, and the whole set-up is surrounded
by a three-layer mu-metal magnetic shielding.
The precessing magnetization of the two gases is detected by pickup coils. A feedback
mechanism adjusts the current of the solenoid, so that the 129Xe Larmor frequency is
kept constant. Then the 3He Larmor frequency is extracted and compared with respect
to different electric field settings.
The measurement result after 125 runs (each lasting between eight hours and several
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1.3 CP Violation and Permanent Electric Dipole Moments of Particles

Figure 1.7: Sketch of the experimental set-up to measure the 129Xe EDM using a He-Xe
dual maser taken from the publication by M. A. Rosenberry [73]. Inset: The
magnetization vector M has a fixed magnitude and projection along the z
axis, i.e., steady state oscillation is sustained above threshold due to the
equilibrium of three torques: spin diffusion from the pump cell, coherence
relaxation, and radiation damping, which depends on M .
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days) is: dXe = (0.7± 3.3stat ± 0.1syst) · 10−27 ecm.

1.4 Motivation for Low-Energy High-Precision Experiments

To summarize the preceding sections, and to point out the benefit of high-precision
experiments at low energies:
It is widely believed that the SM together with GR is a low-energy manifestation of
a more complete theory, that perhaps unifies the four fundamental interactions, or at
least describes gravity at the quantum level. Many extensions to the SM have been
proposed, and these give predictions for physical phenomena that differ from those of
the SM. Some searches for new physics beyond the SM are performed at high-energy
particle colliders. There the new processes or particles would be seen directly if the
energy would be sufficient to produce them. However, the effects (e.g. of a theory of
quantum gravity) would become apparent at high energy scales (e.g. the Planck scale
mP ≈ 1019 GeV) that is by far out of reach for particle colliders.
As an alternative, a very sensitive probe can be constructed at low energies through
precision measurements of quantities, that can be described by the SM. Then physics
beyond the SM would become apparent indirectly through a deviation of the measured
values from the SM predictions. The precision measurements that are the topic of this
dissertation are of this kind:
Firstly, a small amount of the large effects of quantum gravity at the Planck scale
should remain at low energies. This can be tested by looking for a violation of Lorentz
invariance in the neutron sector. Secondly, new sources of CP violation would cause
permanent EDMs of particles that are many orders of magnitude larger than the EDMs
predicted by the SM. Therefore, experiments that put limits on EDMs can rule out (or
at least narrow down) such models, or if they detect one will have an unambiguous
evidence of new physics. Historically, the stringent limit on the neutron EDM has ruled
out more speculative models than any other single experimental approach in particle
physics. EDM precision measurements in various systems with different sensitivities
will continue to constrain proposed models of physics beyond the SM. The various
searches for CP violation are a good example of how low- and high-energy experiments
are complementary to each other.
In Fig. 1.8, the different theoretical motivations for the experiments that are performed
with this 3He-129Xe comagnetometer (including the search for a spin-depended short-
range force mediated by the axion, that is not a focus of this dissertation) are sketched,
showing the huge variety of fundamental questions that can be addressed.
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2 The 3He-129Xe Comagnetometer

In this chapter, the common basic set-up and the principle of measurement for the ex-
periments putting limits on i) Lorentz invariance violation, ii) the electric dipole moment
of 129Xe, and iii) the Axion mass and coupling strength will be presented. Methods and
experimental techniques, that are specialized or unique for a certain experiment, are de-
scribed in the following chapters with a detailed description of the experiment putting
limits on Lorentz invariance violation in Chapter 3, and with a detailed description of
the 129Xe-EDM experiment in Chapter 4. The measurements concerning the axion are
described in [41, 42].
Finally, a discussion of deterministic phase shifts and systematic effects, that affect all
measurements performed with the 3He-129Xe comagnetometer, will be given at the end
of this chapter.

2.1 Theory of Operation

2.1.1 Spins in a Magnetic Field

Microscopic description
The energy of a magnetic moment µ in a magnetic field B0 is given by

E = −µ ·B0 . (2.1)

The corresponding Hamiltonian of a particle with spin σ (associated with a magnetic
moment µ = γσ) has the form

H = −µ ·B0

= −γσ̂ ·B0 (2.2)

with the gyromagnetic ratio γ.
In the following paragraph, only spin 1

2 particles are considered.
The components of the spin operator are defined by the Pauli matrices:

σ̂ =
h̄

2

0 1

1 0

 ,

0 −i

i 0

 ,

1 0

0 −1

 . (2.3)

In the energy spectrum, one finds the well-known Zeemann splitting

∆E = E+ 1
2
− E− 1

2
= γh̄B0 (2.4)

with the corresponding transition frequency, the Larmor frequency

ωL = γB0 . (2.5)
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2 The 3He-129Xe Comagnetometer

To calculate the expectation value of a magnetic moment as a function of time 〈µ(t)〉,
one has to solve the Schrödinger equation with the Hamiltonian given in Eq. (2.2). One
finds that the expectation value follows the classical Euler’s equation of rigid bodies:

d〈µ(t)〉
dt

= γ〈µ(t)〉 ×B(t) . (2.6)

Macroscopic description and Bloch equation
For a large number N of spins (associated with microscopic magnetic moments) in a
macroscopic sample with volume V , the magnetization M is defined by

M =
N

V
〈µ〉 (2.7)

with the ensemble average of the magnetic moments 〈µ〉. If one interprets the triangular
brackets 〈·〉 in Eq. (2.6) now as the ensemble average, the coherent motion of the
spins in a magnetic field can be described with the same relation. Strictly speaking,
the expectation value of the total magnetization and the expectation value of a single
microscopic magnetic moment are only equal if the spins do not interact with each
other. In experiments, one usually measures the result of a large number of spins
simultaneously with the ensemble expectation value corresponding to the macroscopic
magnetization. Finally, this leads to the Bloch equations describing the time evolution
of the macroscopic magnetization which again has the form of the classical expression:

dM(t)

dt
= γM(t)×B(t) . (2.8)

The solution for a constant magnetic field in the z direction B = (0, 0, Bz) and a
perpendicular magnetization M(t = 0) = (M, 0, 0) gives the classical precession of M
around the direction of the magnetic field:

M(t) = (M · cos(ωL · t),M · sin(ωL · t), 0) (2.9)

with the Larmor frequency (Eq. (2.5)) as precession frequency: ωL = γBz.
Due to several relaxation processes, the transverse magnetization decays with a char-
acteristic time constant T ∗2 , while the longitudinal magnetization tends to reach the
thermal equilibrium value Mz,equ with a characteristic time constant T1. The origin of
these relaxation mechanisms is described in Section 2.3.
To include these effects, one has to modify the Bloch equation:

dM(t)

dt
= γM(t)×B(t) +


−Mx/T

∗
2

−My/T
∗
2

(Mz,equ −Mz)/T1

 . (2.10)

2.1.2 Additional Couplings Indicating New Physics

In the case of an additional coupling H1 to the spins that is of a non-magnetic type, the
Hamilton operator is given by:

H = −γσ̂ ·B0 +H1 . (2.11)
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Zeeman splitting Additional interaction 

∆𝐸 ≈ 10−22 GeV 𝛿𝐸 ≈ 10−34 GeV 

ħ𝜔 = ħ𝛾𝐵0 

Figure 2.1: Schematic view of the energy levels of a spin 1
2 particle in a magnetic field.

For 3He and 129Xe and for a magnetic field of about 1 µT the Zeeman
splitting is in the range of ∆E = γh̄B0 ≈ 10−22 GeV. The corresponding
transition or precession frequency is about 10 Hz. The current sensitivity to
additional shifts of the energy levels of the comagnetometer is 10−34 GeV.

This gives rise to an additional shift in the energy levels (see Fig. 2.1) with a corre-
sponding shift δω1 in the transition frequency.
Three different types of coupling are currently investigated with the 3He-129Xe comag-
netometer:
1) For the Lorentz invariance violating coupling of the electron, proton, or neutron spin
(w = e, p, n) to a hypothetical background field b̃w, as described by the minimal
Standard Model Extension in Chapter 1 (page 12 and the following pages), this is:

H1 = HLV = −b̃w · σw (2.12)

with the corresponding frequency shift

δω1,LV =
2

h̄
b̃w · σw . (2.13)

2) For a permanent electric dipole moment d in an electric field E, as described in
Chapter 1 (page 18 and following pages), this is:

H1 = HEDM = −d ·E . (2.14)

If the magnetic guiding field defining the quantization axis is aligned along the z-axis
(the EDM is always parallel or anti-parallel to the spin):

HEDM = −d · Ez (2.15)

with the corresponding frequency shift

δω1,EDM =
2

h̄
d · Ez . (2.16)
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2 The 3He-129Xe Comagnetometer

3) For a coupling induced by the axion, this is:

H1 = HAxion = VΣ (2.17)

with the corresponding frequency shift

δω1,Axion =
2

h̄
VΣ . (2.18)

The potential VΣ is the integral of the axion-mediated spin-dependent short-range po-
tential Vsp(r) over the volume of the massive unpolarized sample, averaged over the
volume of the polarized spin sample (details in [41, 42]).

2.1.3 Comagnetometry

In principle, this additional small energy shift resulting in a frequency shift δω1 can
be measured by a single spin species, for example using nuclear spin polarized 3He.
A macroscopic sample of polarized 3He can be brought into a magnetic guiding field,
which is perpendicular to the magnetization. The magnetization would precess around
the direction of the magnetic guiding field with the Larmor frequency ωL = γB +
δω1 according to Eq. (2.9). A modulation of the additional coupling could lead to a
measurable variation in the precession frequency.
However, small drifts of the magnetic field would immediately mask such an additional
shift in the Larmor frequency. Under realistic conditions, the magnetic field can be
stabilized on the 10−6 level at best (see Fig. 3.6 on page 67). The absolute fluctuation
or drift of the magnetic guiding field over the period of a single measurement run is in
the order of δB0 ≈ 10−6 ·400 nT = 40 pT. The energy resolution would then be limited
by δ∆E = γHe · h̄ · δB0 ≈ 10−26 GeV.
To become insensitive to fluctuations and drifts of the magnetic field, the principle of
comagnetometry is used: Two different spin species are located in the same volume. In
our case, this is nuclear spin polarized 3He and 129Xe gas contained in a glass cell. The
mean magnetic field is the same for both spin species.
The weighted difference of the Larmor frequencies of the two spin species is defined by

∆ω = ωHe −
γHe
γXe
· ωXe . (2.19)

In the case of a pure magnetic interaction of the spins with the magnetic guiding field
like in Eq. (2.1), this is:

∆ω = ωHe −
γHe
γXe
· ωXe

= γHe ·B0 −
γHe
γXe
· γXe ·B0

= 0 . (2.20)

The weighted frequency difference is independent of the strength of the magnetic guiding
field. However, in general, additional interactions do not drop out:

∆ω = δω1,He −
γHe
γXe
· δω1,Xe . (2.21)
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Therefore, the weighted frequency difference is the appropriate observable to trace tiny
frequency shifts stemming from non-magnetic interactions.
Alternatively, one can consider the integral over time, the weighted phase difference

∆Φ = ΦHe −
γHe
γXe
· ΦXe , (2.22)

that is expected to be constant if there are no additional effects.

2.2 Polarization of 3He and 129Xe

The population numbers N+ and N− of the Zeemann states +1
2 and −1

2 with energies
E+ 1

2
and E− 1

2
and ∆E = E+ 1

2
−E− 1

2
= γh̄B0 are given by the Boltzmann distribution

N−
N+

= e−
∆E
kT (2.23)

if the ensemble is in thermal equilibrium at temperature T .
As γHe and γXe are both negative, the +1

2 state has a higher energy for both nuclei.
The corresponding polarization P is defined by

P =
N− −N+

N− +N+
. (2.24)

In thermal equilibrium, this is

P =
N− −N+

N− +N+
=
e−

∆E
kT − 1

e−
∆E
kT + 1

= tanh

(
−∆E

2kT

)
= tanh

(
−γh̄B0

2kT

)
. (2.25)

For typical Nuclear Magnetic Resonance (NMR) applications, like Magnetic Resonance
Imaging or Spectroscopy with high magnetic guiding fields (≈ 1 T) at room temperature,
the polarization is in the order of P ≈ 4 · 10−6. The density of spins in these kinds of
measurements is high enough to generate a sufficient signal strength.
However, the polarization of 3He and 129Xe in thermal equilibrium at room temperature
and a typical strength of the magnetic guiding field B0 ≈ 400 nT is only P ≈ 10−12.
Furthermore, the density of spins in the sample cells is much lower, as gases with
partial pressures in the order of mbar are used. Hence, the signal strength would be
immeasurably low.
The polarization can be increased by many orders of magnitude by means of optical
pumping (hyperpolarization) which will be presented in the following sections. [86–88]

2.2.1 Metastability Exchange Optical Pumping of 3He

In the set-up at the Institut für Physik at the University of Mainz, 3He can be polarized
by Metastability Exchange Optical Pumping (MEOP) [86]. This process is very efficient
and polarizations of P ≈ 90% can be reached.
At a pressure of about 1 mbar and a constant homogeneous magnetic field of about
1 mT, a weak gas discharge excites the 3He atoms from the ground state (11S0) into
the metastable 23S1 state. Transitions from this metastable triplet state to the sin-
glet ground state are forbidden due to angular momentum conservation. However,
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2 The 3He-129Xe Comagnetometer

Figure 2.2: Metastability exchange optical pumping of 3He. Source: [39]

de-excitation to the ground state can arise due to collisions of the 3He atoms with the
glass wall of the pumping cell. Thus, the lifetime of the 23S1 state is about 1 ms.
The energy levels and transitions of 3He, which are described in the following explana-
tion, are illustrated in Fig. 2.2.
The magnetic field causes a splitting of the hyperfine levels with F = 1

2 ; 3
2 into Zeeman

levels with the quantum number mF . σ+ photons at λ = 1083.03 nm (right-circularly
polarized laser light) induce the transition from 23S1 to 23P0 with ∆mF = +1. The
angular momentum of the absorbed photons is transfered to the 3He atoms. The 23P0

state has a lifetime of τ ≈ 10−7 s. This is long enough so that atomic collisions lead
to radiation-less transitions into the other 23P levels (23P1,2). This process is called
collisional mixing. Since the 23P0,1,2 levels are (almost) equally occupied, de-excitation
happens isotropically into the Zeeman levels of the 23S1 state. Consequently, unlike
in the excitation process, there is no net angular momentum transfer during the de-
excitation process. By repeated absorption and spontaneous reemission, the population
numbers are redistributed towards increasing quantum number mF , which leads to a
polarization of the electron spin of atoms in the 23S1 state.
The electronic spin and the nuclear spin are coupled via the hyperfine interaction. Thus,
the nuclear spin of the 3He atom (that is still in the metastable state) is also polarized.
The nuclear polarized atoms collide with unpolarized atoms in the ground state 11S0.
Some of these collisions lead to an exchange of the excitation energy between the collid-
ing atoms, while the nuclear spins stay unchanged. Consequently, this leads to polarized
3He atoms in the ground state.
A complete description of MEOP of 3He including kinetic models of the underlying
processes and a detailed description of the set-up can be found in Ref. [86].
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2.3 Mechanisms of Relaxation

2.2.2 Spin Exchange Optical Pumping of 129Xe
129Xe cannot be directly polarized via MEOP. One has to use Spin Exchange Optical
Pumping (SEOP). In this method the electron spins of alkali atoms (typically Rb) are
polarized by optical pumping. The electron polarization of the alkali atoms is then
transfered to the 129Xe nuclei. This transfer happens either during binary collisions or
during the relatively long lifetime of van-der-Waals molecules. In both cases, it is the
nuclear electron spin-exchange interaction that couples the nuclear spin I of the 129Xe
atom to the electron spin σ of the alkali atom:

V = αI · σ (2.26)

with the coupling constant α that depends on the spatial distance of the alkali and the
129Xe atom.
The polarized gas for the experiments in Chapter 3 has been produced at the Physikalisch-
Technische Bundesanstalt in Berlin. High polarizations of P ≈ 40% can be reached. A
detailed description of this set-up and general information on SEOP can be found in [88].

2.3 Mechanisms of Relaxation

The Modified Bloch equation in Eq. (2.10) includes effects of relaxation with the phe-
nomenological time constants T1 for longitudinal relaxation and T ∗2 for transverse re-
laxation. The different underlying microscopical mechanisms leading to relaxation are
described in the following paragraphs [75].

2.3.1 Longitudinal Relaxation

As described above, the equilibrium polarization at room temperature and small mag-
netic fields in the order of 1 µT is unfavorably low which makes the use of nuclear
hyperpolarization necessary. The polarization in the order of P ≈ 1 corresponds to a
very low temperature of the nuclear spin system. Thus the system composed of the
nuclear spins and the environment at room temperature Tenv ≈ 300 K is far out of
thermal equilibrium. Subsequently there will be a heat flow dQ

dt ∝ (Tenv − Ts) from the
environment to the spin system until thermal equilibrium is reached. This results in an
exponential decay of the nuclear polarization (in this case the equilibrium polarization
P ≈ 10−12 is negligible):

P = P0 · e−t/T1 (2.27)

with the longitudinal relaxation time T1. 1
T1

is proportional to the thermal conductivity
between the environment and the spin system. This energy transfer leading to thermal
equilibrium is usually referred to as "spin-lattice relaxation" in condensed matter Nu-
clear Magnetic Resonance (with the environment being the "lattice").
In gases, different mechanisms contribute to this thermal conductivity:

1

T1
=

1

T1,grad
+

1

T1,wall
+

1

T1,bin
+

1

T1,vdW
. (2.28)
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2 The 3He-129Xe Comagnetometer

The different contributions have a common principle: the interaction of the spins with
the environment is based on magnetic interactions that cause spin flips. The individual
mechanisms are explained in the following paragraphs:

Gradient relaxation
The contribution associated with T1,grad is generated by gradients of the magnetic guid-
ing field. The nuclear polarized atoms are usually in the gas phase and contained in a
glass cell. The gas atoms move randomly around the cell. Due to the inhomogeneities
of the magnetic field, the strength of the magnetic field at the position of an individual
gas atoms varies with time. The spectral density of this randomly fluctuating magnetic
field contains components around the Larmor frequency ωL and will cause spin flips, and
thereby lower the polarization. The exact description of this mechanism can be found
in [75, 76]. In [77] an analytical description for the gradient relaxation in a spherical
volume with radius R was derived. For the "regime of motional narrowing" (or the "low
pressure regime") with low pressures and low magnetic fields the result can be simplified
to:

1

T1,grad
≈ 8R4γ2

175D

(
|∇By|2 + |∇Bz|2

)
(2.29)

with the diffusion coefficient of the gas D.
For the "high pressure regime", i.e. for high magnetic fields and high pressures, the
gradient relaxation is given by

1

T1,grad
≈ D

B2

(
|∇By|2 + |∇Bz|2

)
. (2.30)

During the production and transport of the polarized gas, the gradient relaxation is in
the high pressure regime, and consequently Eq. (2.30) applies (during transport: the
pressure is about 3 bar and the magnitude of the magnetic guiding field is in the order
of B0 = 800 µT).
In contrast, during the measurements, Eq. (2.29) applies (motional narrowing regime)
with pressures in the order of mbar and B0 ≈ 400 nT.

Wall relaxation
The nuclear polarized gas atoms are usually contained in a cell made of glass. Gas atoms
collide with the surface of the cell, can be adsorbed to the surface or even diffuse into
the bulk of the glass. Dipolar coupling or Fermi-contact interaction with ferromagnetic
or paramagnetic impurities (iron particles, dangling bonds) on the surface or inside the
bulk material cause spin flips and subsequently depolarization [81–83].
The rate of the wall relaxation is proportional to the ratio of the surface A to the volume
V of the cell:

1

T1,wall
=

1

η

A

V
(2.31)

with the constant η describing the relaxation properties of the wall material (e.g. ferro-
and paramagnetic impurities).
To maximize T1,wall one uses spherical glass cells (whenever possible) with a radius R.
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Then T1,wall = ηR. The wall material is an alumosilicate glass (GE-180)1 that strongly
suppresses the diffusion of gas atoms into the bulk material and contains very little
ferro- and paramagnetic impurities.

Binary and van-der-Waals relaxation
In binary collisions of the gas atoms, short-lived molecules (3He-3He, 129Xe-129Xe or
129Xe-3He) can be formed, either bound by covalent bonds or van-der-Waals bonds.
In addition to the translational degrees of freedom, these molecules have rotational
and vibrational degrees of freedom. The nuclear spins couple to the rotational angular
momentum of the molecule, which transfers part of the nuclear spin polarization to
orbital angular momentum. The formation rate of such molecules with covalent bonds
depends on the partial pressure p and on the temperature T . In [84] and [85] the
relaxation times due to binary collisions in 3He and 129Xe are given:

THe1,bin ≈ 754 h · p0

pHe
· T
T0

,

TXe1,bin ≈ 56 h · p0

pXe
· T
T0

(2.32)

with p0 = 1013 mbar and T0 = 273.15 K. The relaxation due to the formation of 129Xe-
3He molecules is negligible.
Additionally, xenon forms van-der-Waals molecules with relatively long lifetimes, and
thus, large contributions to relaxation. The lifetime of van-der-Waals molecules can be
drastically reduced by buffer gases (N2 or SF6, for example). Experimentally, one finds
that the relaxation time due to van-der-Waals molecules can be estimated by

TXe
1,vdW = 4.1 h ·

(
1 + 1.05

pN
pXe

)
(2.33)

with the partial pressures of the buffer gas pN and xenon pXe. Thus, T1 is drastically
increased by adding a buffer gas to the gas mixture, in this case N2 with pN = 25 mbar,
while pXe = 5 mbar.

2.3.2 Transverse Relaxation

The component of the magnetization that is perpendicular to the magnetic guiding field,
the transverse magnetization, precesses with the Larmor frequency. The decay of the
measurable macroscopic magnetization is an exponential decay with time constant T2.
The well-known spin-spin relaxation mechanisms (i.e. random fluctuations of the local
magnetic field) from NMR experiments in solids and liquids are unimportant for thin
gases. Thus:

1

T2
=

1

T1,wall
+

1

T1,vdW
(2.34)

≈ 1

T1
(2.35)

1GE-180 is a product of “General Electric”. It consists of SiO2 (60%), BaO (18%), Al2O3 (14%) and
CaO (7%).
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2 The 3He-129Xe Comagnetometer

However, the dephasing of the spins in an ensemble leads to an effective reduction of the
macroscopic magnetization. The presence of a magnetic field gradient in a sample cell
causes an increased transverse relaxation rate. The origin of this relaxation mechanism
is the loss of phase coherence of the atoms due to the fluctuating magnetic field which
is seen by the atoms as they diffuse throughout the cell. Based on the Redfield theory
of relaxation due to randomly fluctuating magnetic fields [76], analytical expressions
can be derived for the transverse relaxation rate for spherical and cylindrical sample
cells [77, 79]. A simplified expression, that is valid in the regime of motional narrowing
(low pressure) and low magnetic fields for a spherical sample cell of radius R, is2

1

T ∗2
=

1

T1
+

1

T2,field

≈ 1

T1
+

4R4γ2

175D

(
2|∇Bx|2 + |∇By|2 + |∇Bz|2

)
(2.36)

D is the diffusion coefficient of the gas (DHe = 1880 cm2/s and DXe = 58 cm2/s at
p0 = 1 mbar and Tenv = 300 K [80]).
The diffusion coefficient D is anti-proportional to the pressure:

D(p) =
D0 · p0

p
. (2.37)

Thus, large transverse relaxation times in the order of several hours can only be reached
with thin gases (p ∝ mbar) and homogeneous magnetic fields with gradients in the order
of pT/cm.

Optimization of the transverse relaxation time
The transverse relaxation time determines the measurement time T of a single measure-
ment run:

T ≈ 3 · T ∗2 . (2.38)

After that time the signal to noise ratio has decreased to about 5% of its initial value.
Since typically T ∗2,Xe < T ∗2,He (see Tab. 2.1) a maximization of T ∗2,Xe has to be performed.
The different relaxation mechanisms (especially wall and gradient relaxation) have to
be considered and a compromise has to be found as wall relaxation decreases with
larger measurement cells, while gradient relaxation increases. A method to reach small
gradients inside the mu-metal shielding is described in Chapter 3 on page 74.
Typical optimized values for the relaxation time constants can be found in Tab. 2.1.

2.4 The Basic Set-Up

The basic set-up of the 3He-129Xe comagnetometer consists of the measurement cell
filled with polarized 3He and 129Xe gas, as well as a buffer gas (nitrogen or SF6), that
is brought into a magnetically shielded room. A coil system with adjustable current
sources generates a magnetic guiding field. A SQUID system then detects the field of
the precessing magnetization of the polarized gases.
The several components of the comagnetometer will be described in detail in the follow-
ing sections.
2The longitudinal gradient relaxation in Eq. (2.29) is now included in the term describing T2,field.
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T1,vdW T1,wall T1 T ∗2

3He - 200 h 200 h 100 h
129Xe 26 h 30 h 14 h 8.5 h

Table 2.1: Typical values of the relaxation times under optimized experimental condi-
tions with spherical cells made of GE-180 glass (diameter 10 cm) and partial
pressures of pHe ≈ 3 mbar, pXe ≈ 5 mbar and pN2 ≈ 25 mbar. The magnetic
field gradients are in the range of 20 to 30 pT/cm.

2.4.1 Magnetic Shielding

Long transverse relaxation times in the order of several hours can only be reached with
homogeneous magnetic fields with gradients in the order of pT/cm. In addition, a high-
resolution measurement of frequencies demands a high signal-to-noise ratio (SNR). In
this case, the amplitude spectral density at the 3He and 129Xe Larmor frequencies of
the magnetic noise stemming from the environment and from the components within
the experiment must be minimized. A detailed discussion of the influence of magnetic
field gradients and noise on the achievable frequency resolution can be found in Chapter
3 on page 89.
The magnetic shielding that surrounds the experiment has two functions: minimizing
field gradients and attenuating external magnetic noise.
The first stage of a typical shielding consists of active shielding to compensate the
Earth’s magnetic field. The currents through three large Helmholtz coil pairs are ad-
justed by a feed-back mechanism that cancels slow drifts of the Earth’s magnetic field.
Different layers of passive shielding follow, with a highly conductive Faraday cage made
of aluminum to effectively suppress high frequency noise, and several layers of mu-metal,
a material with a high magnetic permeability. Mu-metal is an alloy of nickel (77%), iron
(16%), copper (5%) and smaller amounts of chromium and molybdenum. The relative
permeability µr can reach values of up to 105, but this value strongly depends on the
handling of this material, mechanical stress etc., and drops with higher magnetic fields
(it saturates easily). Mu-metal offers an energetically preferred path for magnetic flux
lines due to its high permeability, and thus a space surrounded by this material is effec-
tively shielded from DC fields and low frequency environmental magnetic field noise.
To eliminate the remnant magnetic field of the shielding, e. g. imprinted magnetization
by the Earth’s magnetic field, it is necessary to degauss the individual mu-metal layers
from time to time, after the shield has been opened, for example. The aim of the de-
gaussing procedure is to reduce the residual magnetic field to the ideal value by random
orientation of the magnetic domains. To do so, an oscillating (f ≈ 10 Hz) current with
a slowly decreasing amplitude flows through wires that are closely attached to and sur-
round the mu-metal shielding. The resulting decreasing alternating magnetic field forces
the magnetization of the material on a cyclic passage through the hysteresis loop from
saturation into the almost demagnetized state which is a local state of minimum energy.
Much effort has been put into the theoretical description and experimental optimization
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Figure 2.3: Left: A schematic top view of the Berlin Magnetically Shielded Room
(BMSR-2) that is housed in a dedicated building at the Physikalisch-
Technische Bundesanstalt. It is so far the best shielded room worldwide
with shielding factors of 106 at 1 Hz and 109 at 10 Hz [90]. Right: View
through the several doors leading through the mu-metal layers into the inner
chamber with the prominent white cryostat housing the SQUID sensors and
the Helmholtz coil pairs (green).
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Figure 2.4: Block diagram of the high-precision low-noise dual current source. The cur-
rent source is controlled from the outside via an optical link and it is powered
by LiPo cells. A micro-controller is used for the communication via the op-
tical link and to control the digital-to-analog converters (DACs).

of the degaussing process. An overview can be found for example in [89].
One of the most elaborate magnetically shielded rooms is the Berlin Magnetically
Shielded Room (BMSR-2) of the Physikalisch-Technische Bundesanstalt (see Fig. 2.3)
that was used for the Lorentz invariance violation measurements. With seven layers
of mu-metal with a total thickness of 30 mm, an aluminum Faraday cage (10 mm),
active shielding, and an additional HF-shield, the magnetic noise level inside is reduced
to about 3 fT/

√
Hz for frequencies of a few Hz (above about 1 Hz the noise spectrum

becomes white) and the gradients reach a level of a few pT/cm at the center of the
shielded room.

2.4.2 Coils and Current Sources

Inside the magnetically shielded room, a stable and homogeneous magnetic guiding field
must be generated. In addition, it has to be adjustable to define different quantization
axes of the spins and to tune the Larmor frequencies. The typical strength of the
magnetic guiding field is B0 = 400 nT. A homogeneous magnetic field can be generated
by (square) Helmholtz coil pairs if there is enough space or by a cosine-coil in cylindrical
shape for smaller volumes together with very stable and adjustable low-noise current
sources.
New current sources for this purpose have been developed. The concept of the set-up
is shown in Fig. 2.4. A schematic circuit diagram of the output stage can be found
in Fig. A.8 in the appendix on p. 139. It has two independent channels, e.g. for
two Helmholtz coil pairs perpendicular to each other. The output current is adjustable
(I = −50...50 mA) with a resolution of ∆I = 100 nA and a maximum frequency
of f = 1 kHz. Any sequence of current steps, linear increase/decrease or sinusoidal
currents with arbitrary phases and amplitudes can be programmed.
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2 The 3He-129Xe Comagnetometer

In order to avoid that noise from the environment is conducted into the shielded room,
the current source is controlled from the outside via an optical link and it is powered by
rechargeable batteries (LiPo cells). An ATMEL XMEGA32A4 micro-controller is used
for the communication via the optical link and to control the digital-to-analog converters
(DACs). Analog-to-digital converters (ADCs) measure the actual current through the
coils as an additional feature. The crucial point for the stability and the noise of the
current source is the output stage: The output voltage of the 20-bit DAC AD5791 from
Analog Devices (noise spectral density ≈ 7.5 nV/

√
Hz)3 is filtered, and then buffered by

an AD8675 low-noise (2.8 nV/
√
Hz) operational amplifier. Then the output current is

driven by an AD797 operational amplifier (0.9 nV/
√
Hz). Finally, the current through

the load resistance (coil) causes a voltage drop over four sense resistors that is coupled
back into a feed-back mechanism. The parallel circuit of several sense resistors was
chosen to optimize for and strongly suppress temperature dependent drifts.
The expected output voltage noise of the combination of all active components in the
circuit is 8 nV/

√
Hz. This value is higher, but comparable to the thermal noise of the

coil with R ≈ 100 Ω that is described by the Johnson-Nyquist formula:√
v2 =

√
4kBTR , (2.39)

where
√
v2 is the voltage noise amplitude spectral density ("RMS"), kB is Boltzmann’s

constant and T the temperature of the resistor R. For room temperature and R = 100 Ω
(coils or sense resistor) this is: 1.3 nV/

√
Hz

Thus the overall voltage noise level is expected to be 8.2 nV/
√
Hz. This corresponds to

an current noise of 82 pA/
√
Hz through the coils and the resulting magnetic field noise

is 1.6 fT/
√
Hz.

Linearity of the current source, as well as temperature and long term stability have been
tested extensively and found to be better than needed. In Chapter 3 it will be shown
that remaining drifts of the magnetic guiding field (40 pT per hour) are stemming from
slow relaxation processes of the innermost mu-metal shielding.
The resulting magnetic field is a superposition of the field produced by the coils and the
residual field of the inner mu-metal layer. By adjusting the direction of the magnetic
guiding field one can find positions where the gradients of the two sources almost cancel
each other. This procedure is described in detail in Chapter 3 on page 74. Gradients
down to 20 pT/cm can be reached this way.

2.4.3 SQUIDs as Magnetic Flux Detectors

For the measurement of the precessing 3He and 129Xe magnetization, Superconducting
QUantum Interference Devices (SQUIDs) are used. They are very sensitive magnetome-
ters based on the Josephson effect and flux quantization. In order to reach a very low
noise level (a few fT/

√
Hz), low-temperature DC-SQUID magnetometer systems are

used. A DC-SQUID is made of of two Josephson junctions connected in parallel on a
superconducting loop (see Fig. 2.5). The Josephson junction consists of two weakly cou-
pled superconductors. The weak link is usually a thin insulating barrier (SIS type), but
also a normal conducting layer (SNS type) is possible. The current transport through
3All noise level values in this paragraph are given for f = 10 Hz.
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Figure 2.5: The principle of the DC SQUID with a constant bias current. The voltage
drop depends periodically on the flux Φ that is enclosed by the supercon-
ducting loop.

the barrier occurs due to the tunneling of Cooper pairs. Usually the Josephson junc-
tions are shunted by resistors and capacitors. The current-voltage characteristics of such
junctions then are described very well by a linear model, the resistively and capacitively
shunted junction model (RCSJ model) in most cases. A detailed description of the un-
derlying principles is beyond the scope of this dissertation, but can be found for example
in "The SQUID Handbook" [91, 92]. The important fact is that the DC-SQUID acts
directly as a flux-to-voltage converter, which will be outlined very briefly here:
At zero magnetic flux, a current Ibias fed into the SQUID splits equally into the two
branches (I1 = Ibias/2 and I2 = Ibias/2). If one increases the external magnetic field, a
screening current Is is induced that results in an asymmetric current in the two branches:
I1 = Ibias/2 + Is and I2 = Ibias/2− Is, so that the magnetic flux through the SQUID is
a multiple of the magnetic flux quantum Φ0 = h/(2e). If the additional external flux is
below Φ0/2 then Is generates a magnetic field that exactly cancels the flux enclosed by
the SQUID loop, otherwise it increases it to Φ0. Similarly, for higher external magnetic
fields the screening current pushes the SQUID flux to the nearest integer multiple of
Φ0. When an appropriate bias current Ibias is fed into the SQUID, a linear change
in the magnetic flux causes a periodic change in the voltage across the junctions with
the period of Φ0. In the case of resistive shunts parallel to the Josephson junctions -
removing the hysteresis and adding thermal noise - this modulation becomes smooth
(see Fig. 2.5, right). Thus, the DC-SQUID in the bias current mode acts directly as a
flux-to-voltage converter. To measure small changes δΦ in the applied flux, one usually
chooses a bias current that maximizes the amplitude of the voltage modulation and the
off-set flux, so that the applied flux is at the position (2n+1)Φ0/4 in order to maximize
|(∂V/∂Φa)| .
Usually the DC-SQUID is operated in a flux-locked feedback mode at this optimal work-
ing point in order to keep the maximal sensitivity and to linearize the response function.
To do so, a magnetically coupled small feedback coil is placed near the SQUID that can
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Figure 2.6: The basic principle of a Flux-Locked Loop (FLL) with an external pickup
coil. The niob capsule and the components inside, as well as the niob wire
forming the gradiometer loops on the left side, are at liquid helium tem-
perature. The other components (amplifier, integrator, and the whole DAQ
system is at room temperature. Changes in the external field cause a current
in the pickup loop which generates a magnetic field at the SQUID position
via the input coil. A deviation from the working point of the SQUID voltage
is amplified, integrated and then a current is fed back into the coil via a feed-
back resistor Rf. The resulting change in the flux of the feedback loop also
sets the current in the input coil and pickup loop back to zero. The voltage
drop across the feedback resistor Rf is proportional to the flux difference of
the lower and higher pickup loop. To form a magnetometer, one can use a
single loop pickup coil (instead of the two pickup loops for gradiometers).
When the SQUIDs are used as direct magnetic flux sensors (measuring the
flux at the position of the SQUID) the niob capsule and the coils on the left
side are removed.
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2.4 The Basic Set-Up

generate an adjustable flux. A deviation from the working point of the SQUID voltage
is amplified and integrated, and then a current is fed back into the coil via a feedback
resistor Rf (see Fig. 2.6). Thus, external flux changes (e. g. the measurement signals)
cause a proportional change in the feedback current. The voltage drop across the feed-
back resistor Rf can be read out, digitalized by ADCs and further processed. Such a
set-up generates an extremely high system linearity (harmonic distortion down to about
−120 dB at low frequencies). The dynamic range can be adjusted by changing the
feedback resistor. A smaller resistor increases the dynamic range, but also increases the
demands of the ADC in the data acquisition system with respect to resolution and noise,
because the flux-to-output-voltage relation becomes less steep. Thus, a second method
to increase the dynamic range is often used: The feedback range and the corresponding
ADC input range are set to Φ0. Then, when the flux exceeds this range, the integrator
is reset, the working point of the flux-locked loop is shifted by Φ0. The number of flux
quanta is counted and together with the output voltage (ADC value) gives the total
output of the data acquisition system.
In the set-up that has been described above, the SQUID acts directly as a magnetic flux
sensor, e. g. it measures the flux at the SQUID position or the strength of the magnetic
field perpendicular to the SQUID plane. A second method to measure magnetic fields
uses SQUIDs as current detectors: An external pickup loop made of superconducting
niob wire can be flux-transformer-coupled to the SQUID via an input coil (see Fig. 2.6).
The SQUID is in a niob capsule shielding it from any external magnetic field. Changes
in the external field cause a current in the pickup loop which generates a magnetic field
at the SQUID position via the input coil. The feedback mechanism stays the same and
the resulting change in the flux of the feedback loop also sets the current in the pickup
loop (and input coil) back to zero. The big advantage of the pickup loop set-up, is
the higher magnetic flux due to the larger area of several cm2. Thus a signal with a
fixed magnetic field strength results in a higher amplitude, while the internal SQUID
noise stays the same, substantially improving the signal-to-noise ratio. Furthermore,
wire-wound axial gradiometers can be constructed with the external pickup loop: Two
loops with opposite winding orientations are placed on top of each other at a distance
b, called baseline length. The resulting flux that is coupled into the SQUID via the
input coil is proportional to the flux difference of the two loops. Thus, a homogeneous
magnetic field (or field change) does not give a measurement signal. This principle
can be used to strongly suppress noise (statistical noise from sources that a far away
compared to the gradiometer baseline length, e. g. the current sources and coils or the
mu-metal shielding) or common mode vibrations due to mechanical resonances (e. g.
vibration of the dewar or the whole building). However, point-like signal sources next to
the lower gradiometer loop, that have a typical dipole field distribution, are attenuated
very little. For a gradiometer baseline length b and a distance between the lower loop
and the source d the expected measurement signal is proportional to

S ∝ 1

d3
− 1

(d+ b)3 . (2.40)

To give an example, for typical values b = 7 cm and d = 7 cm the measurement signal
is reduced by 12.5 % compared to a single magnetometer at the position of the lower
loop, whereas common mode noise is almost totally eliminated.
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Figure 2.7: The typical spectrum (amplitude spectral density) of the measurement signal
detected by a single SQUID magnetometer. The peaks at the 129Xe (5 Hz)
and 3He (13 Hz) Larmor frequencies are prominent. The white noise level
is about 3 fT/

√
Hz for frequencies above 1 Hz. For lower frequencies the

1/f noise (flicker noise) is dominant. For frequencies above 100 Hz the anti-
aliasing low pass filter roll-off can be seen (sampling frequency 250 Hz). The
broader peaks around 10 Hz and 15 Hz are caused by mechanical vibrations
of the building.

The first set-up method (using the SQUIDs directly as magnetic flux sensors) was used
for Lorentz invariance measurements (Chapter 3) in a 304 channel magnetometer system
designed for bio-magnetism measurements at the Physikalisch-Technische Bundesanstalt
Berlin. The noise level of the whole set-up (including the internal SQUID noise and all
external noise sources) during the measurements reached the 3 fT/

√
Hz level at the rel-

evant frequencies (see Fig. 2.7). For the 129Xe EDM experiment, a system was designed
and tested that uses the second method with external wire-wound magnetometers and
gradiometers (Chapter 4).
Many more details concerning configuration and performance have to be considered

(like constraints on inductances, magnetic coupling, manufacturing of the SQUIDs, se-
lection of noise free materials, etc.) to construct SQUID systems that can be used as
measurement devices. Much effort has been put into optimizing components (especially
with respect to preamplifier noise) and measurement methods, e. g. flux modulation
(switching periodically between two working points), additional positive feedback (re-
sulting in a strongly asymmetric flux-voltage relation with a steeper working point), fur-
ther amplification stages with series SQUID arrays, "Q-spoilers" to protect the SQUIDs
from high currents, and much more that is beyond the scope of this dissertation. An
detailed description can be found for example in "The SQUID Handbook" [91, 92].
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Special care has to be taken during the construction of the dewar that houses the
SQUIDs and in the selection of the materials for both the dewar and for the carriers on
which the SQUIDs are mounted with respect to magnetic impurities. Magnetic materi-
als (especially ferromagnetic materials) would lead to additional gradients and a worse
noise level. The performance of the total experimental set-up (including the SQUID
system, magnetic shielding, current sources and coils, the measurement cell and all the
supportive structures) with respect to noise can be seen in Fig. 2.7.
To operate the SQUID system the usual cryogenic equipment is needed: for example, a
device to refill liquid helium and a helium level meter.

2.4.4 Further Components

Besides the components that have been described, many more "supportive" structures
are needed to perform measurements. Most of them have been developed, designed
and constructed at the Institut für Physik at Mainz University in the group of W. Heil
[39, 42, 86]:

• Transport vessel for polarized 3He: The polarized 3He is produced via MEOP
at Mainz. Due to its large longitudinal relaxation time in GE-180 glass vessels
(T1 ≈ 300 h at a pressure of a few bars), it can be transported by ordinary parcel
services to the location where the experiment is performed. To do so, special
transport and storage vessels have been constructed with permanent magnets that
generate a magnetic guiding field stronger than the Earth’s magnetic field. In that
way, zero crossings of the total magnetic field can be avoided which would lead to
a fast depolarization of the 3He gas.

• Filling station: To prepare the measurement cell with the right mixture of gases
(polarized 3He and 129Xe, and N2) outside the magnetically shielded room, a
place surrounded by a large pair of Helmholtz coils was set up. The homogeneous
magnetic field generated by these coils is larger than the Earth’s magnetic field,
and thus, defines the quantization axis for the 3He and 129Xe spins. The whole
filling system contains the storage vessels for 3He, 129Xe and N2, the port for
a vacuum pump, the port to connect the measurement cell, a pressure sensor,
connections between these parts with different volumes (to adjust the pressure) and
different sluice valves that allow to fill different gas quantities into the measurement
cell. [42]

• Transport coil: In order to transport the measurement cell from the filling sta-
tion into the magnetically shielded room under controlled magnetic conditions, a
special transport coil was constructed. It consists of two solenoids of equal length
L = 60 cm, but with different diameters. The smaller coil is placed inside the
bigger coil. With the correct number of windings, one can cancel the magnetic
moments of the two coils, so that the outside field falls off very steep, and the
resulting field inside the inner coil is homogeneous. A special switch for turning
on and off the transport coil smoothly ramps up and down the current through the
coils with a time constant of about 7 s, so that the spins can follow adiabatically.
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2 The 3He-129Xe Comagnetometer

2.5 Deterministic Phase Shifts

In section 2.1.3 on page 32, the basic principle of comagnetometry was discussed. This
principle is applied to become insensitive to fluctuations and drifts of the magnetic field.
Two different spin species (nuclear spin polarized 3He and 129Xe atoms) are located in
the same volume, so that the mean magnetic field is the same for both spin species.
Then, the weighted difference of the two Larmor frequencies given by

∆ω = ωHe −
γHe
γXe
· ωXe , (2.41)

should vanish in the case of a pure magnetic interaction of the spins. In other words:
The weighted frequency difference is independent of the strength (and drifts or varia-
tions) of the magnetic guiding field as the Zeeman term drops out. However, additional
interactions, that are of non-magnetic type, do not drop out. Therefore, the weighted
frequency difference is the appropriate observable to trace tiny frequency shifts stem-
ming from non-magnetic interactions. Alternatively, one can consider the integral over
time, the weighted phase difference

∆Φ = ΦHe −
γHe
γXe
· ΦXe (2.42)

that is expected to be constant if there are no additional effects.
However, strictly speaking, this is no longer true, as there are several effects that lead
to a deviation from a constant value for the weighted phase difference. Such effects may
have different time dependencies. These deterministic phase shifts have to be consid-
ered and taken into account during the data evaluation. In the ideal case, all effects
are already considered when the experiment is performed, so that the parameters of the
experiment (e. g. the modulation frequency of the hypothetical additional interaction)
can be chosen in order to minimize the influence of deterministic phase shifts on the
final result.
The different effects leading to deterministic phase shifts, their origins and time depen-
dencies are described in the following sections.

2.5.1 Chemical Shift and the Contribution of Earth’s Rotation

The two effects of chemical shift and Earth’s rotation both give a shift that is linear in
time (if one considers the weighted phase difference).

The Chemical Shift
The literature values for the gyromagnetic values are γHe = 20.37894730(56)·107 rad/(Ts)
and γXe = 7.39954378(50) ·107 rad/(Ts) given by [45, 46] for the isolated 3He and 129Xe
nuclei without their electron shells. The ratio of these literature values is

γHe
γXe

= 2.75408159(20) (2.43)

and can be used as a first estimate of the actual ratio.
In case of the whole 3He and 129Xe atoms, the electron shells shield the nuclei against the
external magnetic guiding field (diamagnetic shielding). The strength of the magnetic
field at the position of the nucleus is smaller than expected, resulting in a slightly lower
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Larmor frequency. This effect, that is well-known from NMR experiments, is called
chemical shift. The shielding factor depends on the actual electronic configuration,
which can be exploited in NMR spectroscopy: The actual electron distribution of atoms
in a molecule depends on the bond type and length to different binding partners etc.
which gives rise to slightly (ppm level) different resonance frequencies of atoms that are
of the same type (e. g. 1H) but at different positions in the molecule.4 This can be
used to identify substances or to investigate the structure of molecules.
In the case of the 3He-129Xe comagnetometer, the chemical shift depends on the partial
pressures of 3He, 129Xe and N2 as they influence the formation rate and lifetime of
dimers (mostly Xe-Xe van-der-Waals molecules) with the corresponding change in the
electron configuration. Thus, the chemical shift may vary from run to run (each time
the measurement cell is filled anew), but stays constant during a single measurement
run. A deviation of the assumed value from the actual value γHe/γXe leads to a linear
increase or decrease in time of the weighted phase difference if the magnetic guiding
field is constant.5

The Contribution of Earth’s Rotation
The experiments that are presented here are all performed on the surface of the Earth
and rotate with the sidereal frequency

ΩE = 2π/86164.101 s−1

= 7.2921150 · 10−5 s−1 . (2.44)

Thus, the laboratory reference system is not an inertial frame of reference. The SQUID
detectors rotate with a frequency ωdet with respect to the precessing spins and so the
measured precession frequencies of 3He and 129Xe are the actual Larmor frequencies
shifted by ωdet. In the weighted phase difference, this contribution is

∆ΦEarth =

(
γHeB0 − ωdet −

γHe
γXe
· (γXeB0 − ωdet)

)
· t

=

(
γHe
γXe
− 1

)
ωdet · t . (2.45)

The sign and magnitude of ωdet depend on the orientation of the magnetic guiding
field and the Earth’s rotation axis, but stay constant during a measurement run. For a
horizontal magnetic guiding field with an angle ρ to the north direction at a latitude Θ
this is6

ωdet = ΩE cos(ρ) cos(Θ) . (2.46)

However, the exact determination of ρ is difficult and only possible with an uncertainty
of about 1◦.
4The proton (1H) is used the most for NMR spectroscopy due to its large natural abundance in
combination with the vast occurrence of hydrogen in organic materials and a high NMR sensitivity
(large gyromagnetic ratio), besides 13C, 15N, 19F and 31P and others.

5The magnetic guiding field is constant on the 10−4 level during a measurement run. A small linear
drift leads to a heavily suppressed quadratic drift in the weighted phase difference, which is so far
not visible in the measurement data.

6Further information on the coordinate systems and transformations can be found in Appendix A.1
on page 127 .
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Thus, the contributions of the chemical shift and Earth’s rotation are combined in a
single linear term. Then the coefficient of this term is fitted during data evaluation.

2.5.2 The Ramsey-Bloch-Siegert Shift

In 1940 F. Bloch and A. Siegert [48] described a shift in the spin precession frequency
in NMR experiments due to the irradiation of an off-resonant oscillating magnetic field:
In NMR experiments the spins are usually manipulated (e. g. 90◦ or 180◦ pulses) by
switching on a linearly polarized magnetic field perpendicular to the magnetic guiding
field oscillating at the Larmor frequency ωL for a certain time. The linearly polarized
field can be decomposed into two circularly polarized components, one at the Larmor
frequency and one counter-rotating component with the frequency −ωL. Thus, the
counter-rotating component is off-resonant by 2ωL. This leads to the well-known Bloch-
Siegert shift δωBS in NMR experiments that depends quadratically on the magnitude
B1 of the oscillating field. If one assumes γB1 � ωL the Bloch-Siegert shift is:

δωBS =
(γB1)2

4ωL
. (2.47)

This result was generalized by Ramsey [49]: The Ramsey-Bloch-Siegert shift gives the
shift in Larmor frequency ωL due to a rotating field with arbitrary amplitude B1 and
an arbitrary frequency ωD:

δωRBS(t) = ±
(√

∆ω2 + γ2B2
1(t)−∆ω

)
with ∆ω = |ωL − ωD| . (2.48)

The plus sign applies to ωD
ωL

< 1, the minus sign to ωD
ωL

> 1, respectively (see Fig. 2.8).
Eq. (2.47) is a special case of Eq. (2.48) with ωD = −ωL and γB1 � ωL, which can be
easily shown by expanding the square root.
In the case of the comagnetometer, B1 is generated by the precessing magnetization of
the polarized gas. Due to the exponential decay of the magnetization (with relaxation
time constant T ∗2 ), B1(t) and consequently δωRBS(t) is time dependent. The Ramsey-
Bloch-Siegert shift in this case has two different manifestations that have to be taken
into account, i. e. cross-talk and self-shift.

Cross-talk

The cross-talk emerges if there are two or more different spin species co-located in the
same volume. In this case, the cross-talk describes the shift due to the influence of the
precessing magnetization of the 3He nuclei (with ωD = ωHe) on the 129Xe precession
frequency (and vice-versa). In this case, ω1 = γB1 � ωL = γB0 is fulfilled (B0 ≈ 400 nT
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and B1 ≈ 100 pT), thus

δωRBS = ±
√

(ωL − ωD)2 + ω2
1 ∓ |ωL − ωD|

= ±
√

∆ω2 + ω2
1 ∓∆ω

= ±∆ω ·
√

1 +
( ω1

∆ω

)2
∓∆ω

≈ ±∆ω ·
(

1 +
1

2

( ω1

∆ω

)2
)
∓∆ω (ω1 � ∆ω)

= ±∆ω · 1

2

( ω1

∆ω

)2

= ±γ
2B2

1

2∆ω
. (2.49)

In this case, ∆ω = |ωHe − ωXe| = |ωXe − ωHe| ≈ 2π · 7 Hz. The plus sign applies to
ωL < ωr, which is the case if one considers the shift in the 129Xe frequency. The minus
sign applies to the shift in the 3He frequency.
Thus, the shift in the 129Xe frequency is:

δωRBS, Xe(t) = +
γ2
XeB1,He(t)

2

2∆ω
= +

γ2
XeB1,He(0)2

2∆ω
· e
− 2·t
T∗

2,He . (2.50)

To get the accumulated phase, one integrates over time:

δΦRBS, Xe(t) =

t∫
0

δωRBS, Xe(t
′)dt′ (2.51)

= const.−
γ2
XeB1,He(0)2

2∆ω
·
T ∗2,He

2
· e
− 2·t
T∗

2,He . (2.52)

The constant term can be neglected (it can be absorbed into a final constant term in
the description of all deterministic phase shifts).
In the weighted phase difference ∆Φ = ΦHe − γHe

γXe
·ΦXe the sign of the effect changes:

∆ΦRBS, Xe(t) =
γHeγXeB1,He(0)2

2∆ω
·
T ∗2,He

2
· e
− 2·t
T∗

2,He . (2.53)

For the effect on 3He, the procedure is the same, but here the sign in the weighted phase
difference does not change:

δωRBS, He(t) = −
γ2
HeB1,Xe(t)

2

2∆ω
= −

γ2
HeB1,Xe(0)2

2∆ω
· e
− 2·t
T∗

2,Xe (2.54)

δΦRBS, He(t) =

t∫
0

δωRBS, He(t
′)dt′

= const.+
γ2
HeB1,Xe(0)2

2∆ω
·
T ∗2,Xe

2
· e
− 2·t
T∗

2,Xe (2.55)

∆ΦRBS, He(t) =
γ2
HeB1,Xe(0)2

2∆ω
·
T ∗2,Xe

2
· e
− 2·t
T∗

2,Xe . (2.56)
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The cross-talk term of the Ramsey-Bloch-Siegert shift has the same sign for helium and
xenon if one considers the weighted phase difference. The time evolution is described
by the two exponential terms with time constants 1

2T
∗
2,Xe and 1

2T
∗
2,He. This is a direct

result of the quadratical dependence on B1.
This shift is small compared to the other deterministic phase shifts, as B1 is in the range
of 10...100 pT, typically. The actual measurements in recent times achieved such a high
sensitivity that it has to be considered during the data evaluation procedure with the
term:

∆Φct
RBS(t) = FHe · e

− 2·t
T∗

2,Xe + FXe · e
− 2·t
T∗

2,He .

For the cross-talk, not only the time evolution of the phase shift is known, but also
the amplitudes can be determined if the strength of the magnetic field B1 inside the
measurement cell is known according to:

FHe =
γ2
HeB

2
1,Xe(0) · T ∗2,Xe

4∆ω

FXe =
γHeγXeB

2
1,He(0) · T ∗2,He
4∆ω

. (2.57)

In practice, the magnetic field inside the sample cell B1(t = 0) can be determined by
analyzing the signal of the SQUID magnetometers which directly measure the magnetic
dipole field outside the spherical sample cell at their respective positions. The uncer-
tainty in the determination of B1(0) is in the order of 5%, resulting in uncertainties of
∆Φct

RBS of about 10%. Due to these large uncertainties on FHe and FXe, they do not en-
ter as fixed values, but are treated as fit parameters. This method of determining B1(0)
via the external field and the treatment of fit parameters with additional and indepen-
dent information on them are described in Chapter 3 (data evaluation of the Lorentz
invariance violation measurements). In contrast, the characteristic time constants T ∗2 of
the exponential decay of the precession signals, as well as the Larmor frequencies, could
be determined with high precision, so that they enter as fixed values into the fitting
procedure.

Self-shift

In contrast to the cross-talk, where two or more co-located spin species are necessary to
generate an effect, the self-shift occurs even when there is only one spin species present.
The self-shift is a result of the coupling of the precessing magnetic moments of the same
spin species among each other in the presence of an inhomogeneous magnetic field.
The gradients of the magnetic guiding field B0 are in the order of pT/cm and amplitude
of the magnetic field B1 produced by the precessing magnetization is in the order of
10...100 pT, typically. Thus, ∆ω < γB1 (but not in every case ∆ω � γB1) holds.
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Figure 2.8: The Ramsey-Bloch-Siegert shift δωRBS as a function of the difference be-
tween the driving frequency ωD and the Larmor frequency of the undisturbed
system ωL for different amplitudes of the driving field γ·B1 = 0.05 Hz (black)
and 0.02 Hz (dashed). At ωD − ωL ≈ 0 the absolute value of the Ramsey-
Bloch-Siegert shift |δωRBS| reaches the maximum γB1. The shift averages
out to zero for small fluctuations around ωD − ωL ≈ 0.

Therefore, by expanding in a Taylor’s series one gets:

δωRBS = ±
√

(ωL − ωD)2 + ω2
1 ∓ |ωL − ωD|

= ±
√

∆ω2 + ω2
1 ∓∆ω

= ±

ω1

√
1 +

(
∆ω

ω1

)2

−∆ω


= ±

(
ω1

[
1 +

∆ω2

2ω2
1

− ∆ω4

8ω4
1

+
∆ω6

16ω6
1

− ...
]
−∆ω

)
= ±

(
ω1 −∆ω +

∆ω2

2ω1
− ∆ω4

8ω3
1

+
∆ω6

16ω5
1

− ...
)
. (2.58)

In first-order approximation the time evolution of the self-shift is δωRBS(t) ∝ γB1(t) =
B1(0) exp (− t

T ∗2
). This is the regime of ωD−ωL ≈ 0 (see Fig. 2.8) where |δωRBS| reaches

the maximum value γB1.
However, in general, there is no precise model to determine the amplitudes of this effect.
Some simple examples will be explained with the help of Fig. 2.9:
a) Two separate spherical cells with volumes V1 and V2 containing polarized spins are
placed next to each other. Due to a gradient in the magnetic guiding field B0 the
Larmor frequencies ωL1 and ωL2 differ in the two volumes. The self-shift δωRBS1 of
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a) b) 

V1 
V1 

V2 

B0(x) 

V2 

𝜔𝐿1 = 𝜔𝐷2 = γB0 x1 < 𝜔𝐿2 = 𝜔𝐷1 = γB0 x2  

⇒ 𝛿𝜔𝑅𝐵𝑆1 > 0 
                  𝛿𝜔𝑅𝐵𝑆2 = −𝛿𝜔𝑅𝐵𝑆1 
 
 

m1 m2 m1 
m2 

Figure 2.9: Illustration of the self-shift in an inhomogeneous magnetic field (a) for the
symmetric case with two separate spherical volumes, (b) for a single spherical
cell with two volumes with different Larmor frequencies. For a detailed
description see text.

the Larmor frequency in the first volume is produced by the rotating dipole field of the
second volume. If one assumes ωL1 < ωL2, then δωRBS1 > 0. In contrast, the rotating
dipole field of the first volume causes a negative shift in the precession frequency of the
second volume: δωRBS2 < 0. If the magnetizations of the two volumes are equal, then
δωRBS2 = −δωRBS1 .
If there is a connection between the two volumes, so that the spins can randomly move
between the two volumes, the self-shift averages to zero (even if V1 6= V2).
b) A single spherical cell in the presence of an inhomogeneous magnetic guiding field
can be (mentally) divided into two volumes V1 and V2 with different Larmor frequencies
ωL1 and ωL2. As in example a), if one assumes ωL1 < ωL2, then δωRBS1 > 0 and
δωRBS2 < 0. So the Ramsey-Bloch-Siegert shift has opposite signs in the two volumes.
However, the resulting frequency shift does not have to be zero in the general case, as
one has to consider the different dwell times of spins in the two volumes, the strength
of the rotating B1 fields (that are not necessarily dipole fields anymore), higher order
gradients etc..
In general, the self-shift strongly depends on the field gradients across the sample cell,
the resulting diffusion coefficients for 3He and 129Xe in the gas mixture, and the shape
of the sample cell [38].
Finally, the self-shift has to be accounted for in the fitting procedure. The corresponding
expression in the fit-function for the weighted phase difference is

∆Φss
RBS(t) = EHe · e

− t
T∗

2,He + EXe · e
− t
T∗

2,Xe . (2.59)
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The time-dependence of the self-shift is known. However, the proportionality factors
EHe and EXe strongly depend on experimental parameters that can hardly be deter-
mined (gradients, shape of the sample cell, etc.). During the duration of a single run,
these parameters are sufficiently constant, so that only the time dependence of B1(t)
that is proportional to the signal amplitude enters. Since there is no precise enough
model to calculate the self-shift amplitudes, EHe and EXe must be kept as free fit
parameters.

2.5.3 Minor Phase Shifts

The phase shifts, that have been described above, contribute at a significant level and
have to be accounted for explicitly in the analysis of the weighted-phase-difference data.
Some minor additional phase shifts, that are too small to give a significant contribution
at the current sensitivity level of the comagnetometer, are described in the following
section.

Field gradient induced shifts
On page 35 the relaxation of transverse magnetization due to magnetic field gradients
was described. Additionally, gradients lead to a small shift in the Larmor frequency
which was shown by Cates et al. [78]. Gradients in the static magnetic guiding field B0

(which is aligned parallel to the z axis in this case) contribute. For a spherical sample
cell with radius R and a diffusion coefficient of the gas D the frequency shift is given by

δωgrad = R2γ3|B0|
(
|∇B0,x|2 + |∇B0,y|2

)∑
n

[
x2

1n

(
x2

1n − 2
) (
D2x4

1nR
−4 + γ2B2

0

)]−1

(2.60)

Here x1n are the zero points of the derivative of the spherical Bessel function ( ddxj1(x1n) =
0, n = 1, 2, 3, ...).
Cates showed that a similar term occurs for gradients in an oscillating magnetic field
B1(t) ∝ sin(ω · t). This effect is smaller and can be neglected.
The gradients in the magnetic guiding field are constant during a single measurement
run, and thus, δωgrad is constant. This gives a contribution to the linear term describ-
ing the weighted phase difference (which already includes the chemical shift and the
contribution of Earth’s rotation).

Gravitational shift
The functional principle of the comagnetometer is to become independent of drifts or
variations in the magnetic guiding field by using two co-located spin species in the
same measurement cell, so that the mean magnetic field is the same for both spin
species. However, on closer examination, that is not exactly true if one considers the
difference in the center of mass for 3He and 129Xe due to their different molar masses
(M3He = 3.016 g

mol and M129Xe = 128.955 g
mol).

The difference in the center of masses can be calculated using the barometric height
formula that gives the pressure p at height z with z = 0 at the center of the cell:

p(z) = p0 exp
(
−z
c

)
with c =

RT

Mg
(2.61)
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with the pressure at the center of the cell p0, the gas constant R = 8.3 J
mol K , the

temperature T (room temperature T ≈ 300 K), and the gravitational acceleration at
the Earth’s surface g = 9.81 m

s2 . For
3He and 129Xe the scale heights are:

c3He = 85305 m
c129Xe = 1995 m (2.62)

For a spherical cell with radius R the center of mass z is

z =

∫ R
−R dz z p(z)

(
R2 − z2

)∫ R
−R dz p(z) (R2 − z2)

.

With R = 0.05 m the centers of mass are:

z3He = −6 · 10−9 m
z129Xe = −2.5 · 10−7 m . (2.63)

As expected, both centers of mass are below the center of the spherical glass cell. The
difference in height for the two center of masses is

∆z = z3He − z129Xe = 2.5 · 10−7 m = 0.25 µm . (2.64)

Correspondingly, for a cylindrical cell (cylinder axis perpendicular to the gravitational
force) with radius R the center of mass is:

z =

∫ R
−R dz z p(z)

√
R2 − z2∫ R

−R dz p(z)
√
R2 − z2

resulting in

z3He = −7 · 10−9 m
z129Xe = −3.1 · 10−7 m . (2.65)

and

∆z = z3He − z129Xe = 3.1 · 10−7 m = 0.31 µm . (2.66)

The distance in the centers of mass for the two gases leads to a shift in the weighted
frequency difference in the presence of z-gradients in the magnetic guiding field:

δωgrav = ωHe −
γHe
γXe

ωXe = γHe ·
(
B0,Xe +

∂B0

∂z
·∆z

)
− γHe ·B0,Xe

= γHe ·
∂B0

∂z
·∆z (2.67)

If the gradients in the magnetic guiding field are constant during a single measurement
run then δωgrad is constant and typically in the order of

δωgrav = γHe ·
∂B0

∂z
·∆z ≈ 2 · 108 rad

Ts
· 30

pT
cm
· 0.3 µm = 186 nrad/s . (2.68)
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In the weighted phase difference, this gives a contribution to the linear term. However,
time-dependent gradients would immediately lead to a structure in the weighted phase
difference. Special care has to be taken to avoid fluctuations of the gradients that
have the same time structure as the fundamental effect under investigation. To give an
example, an electric field has to be switched periodically for the search of the 129Xe-
EDM. If such an EDM is present this would manifest in a signal in the weighted phase
difference with the periodical structure of the switching. However, high-voltage induced
leakage currents generate inhomogeneous magnetic fields that have the same periodical
structure and therefor could mimic a false EDM or mask a true EDM; a potential
systematic error that has to be considered.

Interaction of the polarized gas with SQUIDs
When SQUIDs are used as direct magnetic flux detectors (see page 42), the screening and
feedback currents produce magnetic fields (typically only the dipole fields are relevant
if the distance to the SQUIDs is large compared to the extension of the SQUIDs). The
304-channel SQUID system in BMSR-2 at PTB Berlin uses this set-up. The influence
of the magnetic dipole fields produced by the SQUIDs on the spins in the measurement
cell was estimated by investigating the coupling of different SQUIDs among each other
(e. g. correlation in the SQUID noise) and was found to be of no concern.
The SQUID system that has been developed for the 129Xe-EDM experiment uses the
set-up with SQUIDs as current sensors (see Fig. 2.6) where the current in the pick-up
loop is always kept at zero by a feedback mechanism. Therefore no external field is
produced and the spins in the measurement cell are not affected by the SQUID system.
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3 Limit on Lorentz Invariance and CPT Violating
Neutron Spin Interactions

In this chapter, I will describe the experiments that have been performed as a part of
this thesis in order to put a limit on a Lorentz invariance and CPT violating coupling
of the neutron spin σn to a hypothetical background field b̃n. Such a coupling of the
form

V = −b̃n · σn (3.1)

is motivated in Section 1.2.1 on page 12 within the minimal Standard Model Extension.
The background field has a distinct direction is space that is constant in time (on the
time scale of the experiment). As the laboratory frame of reference rotates with the
Earth, a coupling of such a kind (Eq. (3.1)) would lead to a variation of the Larmor
frequencies with the period of the sidereal day. Comparing the Larmor frequencies of co-
located nuclear polarized 3He and 129Xe spin samples (comagnetometry) is the method
of choice to get independent of magnetic field drifts, as explained above.
The components and methods, that have been utilized in this experiment, are described
in the following section. Then, the general data evaluation procedure from raw data
to the weighted phase difference (and other important intermediate data like signal
amplitudes, relaxation time constants) is presented. Subsequently, two different types
of measurement strategies, that have been applied, are discussed: Firstly, measurements
using a slowly rotating magnetic guiding field are described. Though the results of these
measurements did not flow into the final limits on Lorentz invariance violation, a lot of
knowledge about the behavior of the comagnetometer, the mu-metal shielding and the
measurement system etc. could be derived. Thereafter, the measurements using a static
magnetic guiding field and method of data evaluation with the extraction of limits on
Lorentz invariance violation are described in detail. Finally, the phase stability of the
comagnetometer and systematic uncertainties are discussed.

3.1 Experimental Technique

The experiments were performed inside the strongly magnetically shielded room BMSR-
2 at the Physikalisch-Technische Bundesanstalt at Berlin (latitude Θ = 52.52◦) in the
year 2012. It is the best shielded room worldwide with shielding factors of 106 at 1 Hz
and 109 at 10 Hz [90]. With seven layers of mu-metal with a total thickness of 30 mm,
an aluminum Faraday cage (10 mm), active shielding, and an additional HF-shield the
magnetic noise level inside is reduced to about 3 fT/

√
Hz for frequencies of a few Hz

(above about 1 Hz the noise spectrum becomes white). The gradients reach a level of
a few pT/cm at the center of the shielded room. A schematic view and an image of
the room can be found in Fig. 2.3 on page 40 with general information about magnetic
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3 Limit on Lorentz Invariance and CPT Violating Neutron Spin Interactions

Figure 3.1: The spherical sample cell with a radius R = 5 cm attached to the filling
station on the right side.

shielding on the same page. The room has a cubic shape with an inner edge length of
2.9 m.
Two square Helmholtz coil pairs (Bx- and By-coils) were installed inside the room. They
were mounted perpendicular to each other, so that any horizontal direction of the mag-
netic guiding field could be chosen by adjusting the currents through the coils. The edge
lengths of the Bx- and By-coils were 180 cm and 175 cm and the distances between the
individual coils were 97 cm and 94 cm, respectively. Each coil had 20 windings. Thus,
a current of 20 mA through a Helmholtz coil pair produced a field of about 400 nT in
the center of the room.
The adjustable, low-noise two-channel current source, that was developed for these mea-
surements (see p. 41), was placed inside the HF-shield and active shield, but outside
the seven layers of mu-metal, and connected to the two coil pairs.
The 3He and 129Xe nuclear spins were polarized outside the shielding by means of opti-
cal pumping. Polarized 3He gas was produced at Mainz using MEOP and then send to
Berlin via regular parcel service in the special transport boxes. Due to its fast depolar-
ization, 129Xe was polarized by SEOP on site by W. Kilian [88].
The measurement cells have to be prepared with care in order to get a low longitudinal
relaxation rate. Previous experiments have proven that GE-180 glass shows very low
wall relaxation rates. The cells are of a spherical shape with a radius R = 5 cm with a
stem to fill the cell. To get rid of ferromagnetic contaminations on the inner surface, the
cells were cleaned with a two percent solution of Mucasol and afterwards with distilled
water. Then a glass valve was glued to the stem of the cell (see Fig. 3.1). After the
cleaning process the cells were evacuated and demagnetized. To do so, the cells were
put into a strong oscillating magnetic field (f ≈ 3 Hz) with an initial strength of about
0.2 T. The field amplitude was decreased linearly to zero in about 20 minutes. This pro-
cedure demagnetizes microscopic ferromagnetic particles which - especially if in direct
contact with the polarized gas - otherwise would lead to a fast depolarization. Several
cells were manufactured and prepared, so that finally the ones with the highest T1, He
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3.2 Data Evaluation

(for good cells values of up to 300 hours) could be chosen for the experiment.
An existing NMR setup in Mainz was used to measure T1, He. Polarized 3He (about 200
mbar) was filled into the cell which was kept in a magnetic guiding field of about 0.8 mT.
Every 15 minutes the spins were flipped by a small angle α < 3◦ and the Free Induction
Decay (FID) signal of the transverse magnetization was detected. The amplitude of the
FID signal as a function of time allows the extraction of T1, He.
The low-relaxation spherical glass vessel was prepared inside the filling station. Typ-
ically, the optimum conditions in terms of long transverse relaxation times (T ∗2 ) and
high signal-to-noise ratio were met at a gas mixture with pressures of pHe = 3 mbar,
pXe = 5 mbar, pN2 = 25 mbar. The Xe gas was enriched to 91% 129Xe, and the He
gas was pure 3He. Nitrogen suppresses spin-rotation coupling in bound Xe-Xe van-der-
Waals molecules (see page 37). The sample cell was placed in the deactivated transport
coil, and then the magnetic field of the transport coil was slowly ramped up. It was
ensured that the field of filling station and transport coil were aligned to avoid spin
flipping. Then the transport coil (with the cell inside) was brought into the shielded
room. Then the cell was placed in the center of the room below the dewar that houses
the SQUID sensors. The field inside the room was aligned in the y-direction, so that the
field of the transport coil (which was brought through the door in a horizontal position)
pointed into the same direction. Subsequently, the transport coil was ramped down and
removed. After shutting the doors, the sample spins could be manipulated by changing
the magnetic guiding field, e. g. spin flip by non-adiabatic switching.
The sinusoidal change in magnetic flux due to the spin precession of the gas atoms was
detected by a 304-channel low-temperature SQUID-system with its corresponding high
resolution data acquisition unit. This system was originally designed and installed by
the PTB for biomagnetic and related applications (e. g. magnetocardiogram) [93]. The
SQUIDs are placed in a liquid-helium dewar that is attached to the ceiling of BMSR-2.
The dewar has a flat bottom with an inner diameter of 250 mm and houses 19 identical
modules. Each module consists of 16 SQUIDs that measure the x, y, and z-component
of the magnetic field at four different heights (0, 30, 70 and 140 mm) above the dewar
bottom. No external pick-up loops are used, so the SQUIDs measure the field directly at
their positions. The output signals of the SQUIDs are digitalized with fsampling = 250 Hz
and recorded. Usually, only the data of a few (about 16) magnetometers in the proximity
of the sample cell are saved to avoid large data files.

3.2 Data Evaluation

In this section, the general data evaluation procedure with the different steps from raw
data to the weighted phase difference and other important intermediate data (like signal
amplitudes, relaxation time constants, etc.) is discussed.

Gradiometers
The recorded SQUID signals were processed off-line after the measurement was finished.
The typical raw signal can be seen in Fig. 3.2 with the sinusoidal change in the mag-
netic flux at the SQUID position due to the precessing magnetization (at the Larmor
frequencies ≈ 13 Hz and 5 Hz for B0 = 400 nT). The measured signal amplitudes for
the lowest SQUIDS (the ones that are next to the sample cell) were up to 20 pT and
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Figure 3.2: A single magnetometer raw signal with the prominent beating of the 3He
and 129Xe precession signal at the Larmor frequencies ≈ 13 Hz and 5 Hz
(this corresponds to B0 = 400 nT).

8 pT for 3He and 129Xe, respectively. The corresponding spectrum of the raw signal
for a single magnetometer can be seen in Fig. 3.3 (top). The prominent sharp peaks
at around 5 Hz and 13 Hz correspond to the precession frequencies of 3He and 129Xe.
The single magnetometer spectrum shows large and broad structures around 10 Hz and
15 Hz stemming from mechanical vibrations of the building and of the dewar itself in
the (slightly inhomogeneous) magnetic guiding field. The narrow peaks at 50 Hz and
100 Hz are caused by irradiation from power lines. Noise from these sources can be
greatly reduced by using gradiometry, in this case "software gradiometry": One chooses
a magnetometer in the proximity of the sample cell and subtracts the signal of a mag-
netometer at a larger distance (in this case a gradiometer baseline length of b = 70 mm
was chosen). Thus, a homogeneous magnetic field (or field change) does not give a re-
sulting signal. However, point-like signal sources next to the lower magnetometer, that
have a typical dipole field distribution, are attenuated very little (12.5 % for d = b, see
Eq. (2.40) on page 45). The spectrum of such a gradiometer signal is shown in Fig. 3.3
(bottom). Thus, always gradiometer data was used in the following evaluation.

Fit to sub-cut data
To extract the 3He and 129Xe amplitudes, frequencies and phases the method of piecewise
fitting to the gradiometer signal data was applied: The data of the gradiometer was split
into packages (sub-cuts) with the length of ∆t = 3.2 s. This corresponds to 800 data
points at the sampling frequency 250 Hz. For a measurement run that lasted about one
day, the resulting number of sub-cuts was about N = 3 · 104. In Fig. 3.2 one of these
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Figure 3.3: The spectrum (amplitude spectral density) of a single magnetometer (top)
and a gradiometer (bottom). The gradiometer signal was calculated using
the signal of a magnetometer next to the sample cell and subtracting the
signal of a magnetometer that is 70 mm above ("software gradiometer").
The prominent sharp peaks at around 5 Hz and 13 Hz correspond to the
precession frequencies of 3He and 129Xe. The single magnetometer spectrum
shows large and broad structures around 10 Hz and 15 Hz stemming from
mechanical vibrations, and narrow peaks at 50 Hz and 100 Hz (irradiation
from power lines). These undesired signals are extremely reduced in the
gradiometer signal. For frequencies above 100 Hz the anti-aliasing low pass
filter roll-off can be seen (sampling frequency 250 Hz). The white noise
level of the gradiometer is increased by a factor

√
2 compared to the single

magnetometer due to the addition of uncorrelated noise of two SQUIDs.
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sub-cuts can be seen.
The system noise was estimated by integrating over the noise spectrum from ≈ 0.3 Hz
to 100 Hz. This value was determined for each gradiometer individually and for each
measurement run anew. Typical values were in the range of σ = 25 ... 40 fT. This value
was used as an uncertainty of the data points. Subsequently, the function

f iraw(t′) = AiHe · cos
(
ωiHet

′)+Bi
He · sin

(
ωiHet

′)+AiXe · cos
(
ωiXet

′)+Bi
Xe · sin

(
ωiXet

′)
+ci0 + ci1 · t′ (3.2)

was fitted to the data of each individual sub-cut, denoted by (i). The sin- and cos-terms
describe the 3He and 129Xe precession signals at the corresponding Larmor frequencies
ωXe and ωXe, while the linear term accounts for the SQUID offset and a small drift of
this offset in time. To minimize the correlation between the sin- and cos-terms, and the
correlation between c0 and c1 · t′, t′ = 0 was chosen to be in the middle of the sub-cut,
so that the data points laid symmetrically around zero from t′ = −∆t/2 = −1.6 s to
t′ = ∆t/2 = 1.6 s. The length of the sub-cuts was chosen so that the number of data
points (800) was high enough for a statistical analysis on the one hand, but the length
of a sub-cut (∆t = 3.2 s) was short enough, so that the drift of the SQUID offset could
be described by the linear term on the other hand. The non-linear fit parameters ωXe
and ωXe are very sensitive to the start values for the fit (the chances that the fit won’t
converge are high if one uses start values that are too far away from the actual values of
ωXe and ωXe), so that the fit results of the previous sub-cut were used as start values.
Finally, for each sub-cut, one gets a set of estimations for the eight fit parameters
AHe/Xe, BHe/Xe, ωHe/Xe, c0 and c1 and their uncorrelated and correlated uncertainties,
and additionally, χ2 as a measure of the goodness of the fit. The residuals (the measured
data after subtraction of the fitted function in Eq. (3.2)) can be seen in Fig. 3.4 for a
single magnetometer (top) and a gradiometer (bottom). The fit model is well suited for
the gradiometer data, whereas for the magnetometer data the mechanical vibrations,
that have been mentioned earlier, can not be neglected.
As the number of sub-cuts is very high for a measurement run lasting one day (about
N = 3 · 104), the distribution of the χ2 values can be compared to the expected χ2-
distribution: The number of data points per sub-cut is 800 and the number of free fit
parameters is 8, resulting in 792 degrees of freedom (d.o.f.). For this large number the
χ2-distribution can be approximated by a Gaussian probability distribution very well.
Conveniently, one considers the χ2/d.o.f. with an expected mean of one and a standard
deviation σ =

√
d.o.f.− 1/d.o.f. ≈ 2/

√
d.o.f. ≈ 0.050. In Fig. 3.5 the observed χ2/d.o.f.-

distribution of the sub-cut data fits is displayed, which is consistent with the expected
values. This shows that the estimation of the uncertainty of the amplitude of each data
point (stemming from the integral over the noise spectrum) is reasonable and the fit
function describes the data well.1

In earlier measurements [39, 42] for about 5% of the sub-cuts χ2/d.o.f. was larger than
1On a closer look, the observed standard deviation σ′ = 0.073 is slightly larger than the expected one
σ = 0.050 and the observed mean µ′ = 1.012 is also slightly larger than the expected mean µ = 1.
The total noise amplitude has been estimated correctly; however the noise is not pure Gaussian
(white) noise, but has some correlation (e. g. vibrations, 1/f -noise at low frequencies, etc.), which
is consistent with the spectrum (Fig. 3.3). The non-Gaussian noise has not been included in the fit
model.
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Figure 3.4: Residuals of the magnetometer data (top) and gradiometer data (bottom)
after subtraction of the fitted function in Eq. (3.2) from the measured data
for a single sub-cut. There is a clear structure in the magnetometer residuals
stemming from vibrations. The residuals of the gradiometer seem to be
Gaussian distributed.
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Figure 3.5: The observed χ2/d.o.f.-distribution of the sub-cut data fits with N = 27695
with mean µ′ = 1.012 and standard deviation σ′ = 0.073. For d.o.f. = 792
the expected χ2/d.o.f. distribution has a Gaussian shape with a mean value
µ = 1 and a standard deviation σ = 0.050 .

2 and could reach values of a few hundred. These sub-cuts had to be discarded and
could not be used for the further analysis. On a closer inspection, a jump in the SQUID
signal with an amplitude in the order of 1 pT arose in the corresponding sub-cuts. The
origin of these jumps was not clear. A possible explanation is an slight instability of the
old current sources which have been substituted by the new ones (p. 41). In these new
measurements (testing Lorentz invariance), no such jumps occurred and all sub-cuts
could be used for the further analysis.

Determination of Amplitudes and Phases
In the previous step of the data analysis (fit to the sub-cuts), a set of estimations for
the eight fit parameters AHe/Xe, BHe/Xe, ωHe/Xe, c0 and c1 and their uncorrelated and
correlated uncertainties for each sub-cut was obtained. The Larmor frequencies ωHe and
ωXe are directly proportional to the strength of the magnetic guiding field B0, and thus,
can be used as a measure for the stability of B0. In Fig. 3.6 (right) the measured Larmor
frequencies are plotted as a function of time for a measurement run lasting about one
day with a constant current through the coils. In the first two to three hours, the relative
drift of the magnetic guiding field is in the order of 10−5 per hour, corresponding to an
absolute drift of 4 pT per hour due to the relaxation of the mu-metal shielding.
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3 Limit on Lorentz Invariance and CPT Violating Neutron Spin Interactions

The mu-metal adapts to the Earth magnetic field, that penetrates through the open
doors when the sample cell is brought into the room and pushed out when the doors
are closed, as well as to the magnetic guiding field that is switched at the beginning of
the measurement. After about 10 hours the drift reaches small values in the order of
10−6 per hour (corresponding to 0.4 pT per hour) when the mu-metal has settled and
is in equilibrium. The Larmor frequency uncertainty is much larger for 129Xe as the
signal is smaller, especially towards the end of the measurement run due to the shorter
transverse relaxation time.
The amplitudes aHe/Xe of the 3He and 129Xe signals are calculated from the fit param-
eters AHe/Xe and BHe/Xe according to

aHe/Xe =
√
A2
He/Xe +B2

He/Xe . (3.3)

The uncertainties of aHe/Xe are determined from the uncertainties of AHe/Xe and BHe/Xe
via Gaussian uncertainty propagation. In Fig. 3.6 (left) the signal amplitudes are plotted
as a function of time. The transverse relaxation times T ∗2, He/Xe can be extracted by
exponential fits to the amplitude data:

aHe/Xe(t) = a0, He/Xe · e
− t
T∗2, He/Xe . (3.4)

As mentioned earlier, T ∗2 strongly depends on the gradients of the magnetic field. These
gradients are sufficiently constant over the period of a single measurement run, so that
the transverse relaxation times can be considered as constant, too.
For the further evaluation, the phases of the 3He and 129Xe signals are of main interest
as they can be determined very precisely. The phases ϕ(i)

He and ϕ
(i)
Xe (in the range of

[0, 2π)) for each sub-cut (i) at the middle of the sub-cut (at t′ = 0) are determined by

ϕ
(i)
He/Xe = arctan2(B

(i)
He/Xe, A

(i)
He/Xe) + π . (3.5)

Here "arctan2(B, A)" with two arguments automatically chooses the right quadrant
for the phases (unlike arctan(B/A) ). The function arctan2(B, A) + π instead of
arctan2(A, B) is used so that ϕ lies in the range of [0, 2π) instead of [−π, π).
These phases ϕ(i)

He and ϕ
(i)
Xe at the times t(i) = (i− 1/2) ·∆t are the accumulated phases

modulo 2π. Thus, to determine the accumulated phases Φ
(i)
He and Φ

(i)
Xe at t(i), one has

to add the appropriate multiples of 2π (see Fig. 3.7):

Φ
(i)
He/Xe = n

(i)
He/Xe · 2π + ϕ

(i)
He/Xe (3.6)

with the numbers n(i)
He and n

(i)
Xe of revolutions of the

3He and 129Xe magnetization from
the beginning of the measurement run at t = 0 till t(i) (which is the center of the i-th
sub-cut). n(i)

He/Xe is calculated by taking n(i−1)
He/Xe and adding ∆n

(i)
He/Xe which is defined

by

∆n
(i)
He/Xe =

ω(i)
He/Xe ·∆t−

(
ϕ

(i)
He/Xe − ϕ

(i−1)
He/Xe

)
2π

 . (3.7)
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Figure 3.7: The accumulated phases Φ(i) at t(i) are determined by adding the appropri-
ate multiples of 2π to ϕ(i).

Here [·] is the "nearest-integer function" (rounding to the nearest integer). As ω is very
constant, so that the argument within the brackets on the right side of Eq. (3.7) is
already very close to an integer (e. g. 41.9997 for 3He at B0 = 400 nT), a false mapping
does not occur2. In other words: The number of revolutions of the magnetization is
estimated by the Larmor frequency, which is known precisely enough. The accumulated
phases ΦHe and ΦXe increase almost linearly in time (as the Larmor frequencies are
almost constant) and after one day of measurement reach about ΦHe(t = 1day) ≈
82 Hz · 86400 s ≈ 7 · 106 rad and ΦXe(t = 1day) ≈ 30 Hz · 86400 s ≈ 2.6 · 106 rad,
respectively. The uncertainties of the accumulated phases for 3He are on the 10−4 rad
level, while the corresponding uncertainties for 129Xe vary from 5 · 10−4 rad at the
beginning to 10−2 rad at the end of the measurement run due to the faster decay of the
129Xe amplitude.
In the next step, the weighted phase difference can be computed:

∆Φ(i) = Φ
(i)
He −

γHe
γXe

Φ
(i)
Xe . (3.8)

As mentioned before, in principle, ∆Φ is constant and independent of B0 if there are
no other sources of systematic shifts or additional interactions. But before explaining
in detail the further evaluation of the weighted phase difference for a constant magnetic
guiding field, the measurements using a slowly rotating magnetic guiding field are de-
scribed. Though the results of these measurements did not flow into the final limits
on Lorentz invariance violation, a lot of knowledge about the behavior of the comag-
2Even if it would occur, a jump of multiples of 2π would be easily detected later in the weighted phase
difference evaluation.
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Figure 3.8: Summary of the data evaluation procedure from the SQUID raw data to the
weighted phase difference ∆Φ and other important intermediate data like
signal amplitudes and relaxation time constants.

netometer, the mu-metal shielding and the measurement system etc. could be derived.
Thereafter, the measurements using a static magnetic guiding field and method of data
evaluation with the extraction of limits on Lorentz invariance violation are described in
detail.

3.3 Evaluation and Results for a Rotating Magnetic
Guiding Field

The 3He-129Xe comagnetometer is only sensitive if the new spin-dependent interaction
in question is varying in time. In case of the search for a coupling of spins to a relic
background field, the Earth’s daily rotation leads to a modulation of the spin orientation
in space with the sidereal frequency Ωs = 2π/86164.101 s−1 if the direction of the mag-
netic guiding field is kept constant (i. e. V = −b̃n ·σn ∝ sin (Ωs · t)). The frequency of
this modulation is unfavorably low, as the single run measurement time is comparable
to the sidereal period (or even smaller). This leads to large correlations between the
linear and exponential terms describing deterministic phase shifts (see p. 48) and the
sinusoidal term describing the Lorentz invariance violating effect. Consequently, the
correlated uncertainties on b̃n are large compared to the uncorrelated uncertainties.
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Figure 3.9: After the π/2-flip (non-adiabatic spin flip) the currents through the coils
have a sinusoidal time-dependence resulting in a slow (adiabatic) rotation of
the direction of the magnetic guiding field.

Therefore, it is useful to have a system that can adiabatically rotate the magnetic guid-
ing field (for instance Ωrot ≈ 2π/(20 min)) in order to have a much more preferable
modulation frequency (V = −b̃n ·σn ∝ sin ((Ωrot ± Ωs) · t)) that may help to get rid of
the correlated uncertainties that limited the overall sensitivity at earlier measurements.
The freely programmable current sources (see p. 41), that have been developed for the
generation of the magnetic guiding field for the comagnetometer, can be used to manip-
ulate the spins in a well-defined way. A magnetic guiding field can be generated that
points into any user-defined direction in the horizontal plane with the two perpendicular
Helmholtz coil pairs. In particular, the magnetic guiding field can be rotated slowly by
driving two sinusoidal currents Ix ∝ cos(Ωrot ·t) and Iy ∝ sin(Ωrot ·t) through the x- and
y-coils (see Fig. 3.9). Then the angle α = Ωrot · t between the direction of the magnetic
guiding field and the x-axis grows linearly in time.
The experiment is performed this way: The longitudinal polarized gases are brought
into the magnetically shielded room while the magnetic guiding field points into the
y-direction. Then the field is switched non-adiabatically into the x-direction (π/2-flip
by non-adiabatic switching), which causes the magnetization to precess in the y-z-plane.
Subsequently the direction of the magnetic guiding field is slowly (adiabatically) rotated
by driving the corresponding sinusoidal currents through the coils. The precessing mag-
netization is detected by the SQUID system.
However, it turned out that the noise level inside the magnetically shielded room

increases dramatically, especially at low frequencies, while the magnetic guiding field
rotates. This is most likely due to the relaxation process of the innermost mu-metal
shielding that adapts itself to the varying guiding field and thus can never reach equilib-
rium. Therefore, the measurement procedure was modified to a step-by-step rotation
scheme: The magnetic guiding field rotates slowly for a certain amount ∆α (e. g. 45◦ in
5 min) and then stays constant for a while (e. g. ∆T = 25 min). These measurements
provided a deeper insight into the behavior of the comagnetometer, the mu-metal shield-
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Figure 3.10: The 3He Larmor frequency for a step-by-step rotating magnetic guiding
field. The Larmor frequency changes faster while the magnetic guiding field
rotates (almost vertical lines) and drifts slowly while the current through
the coils is kept constant.

ing, and the whole measurement system that gave the possibility to derive optimization
strategies for the measurements with the constant magnetic field.

3.3.1 Evaluation and Results

The first step of the data evaluation for the step-by-step rotation (the magnetic guiding
field repeatedly rotates slowly for a certain amount ∆α = 45◦ in 5 min and then stays
constant for ∆T = 25 min) are as described above: piecewise fitting to the sub-cuts of
the gradiometer data with the extraction of Larmor frequencies, amplitudes and phases.
While the magnetic guiding field rotates, the noise level is increased by a factor of
30 compared to the static case. This leads to larger uncertainties in the frequency,
amplitude and phase determination.

Frequency
In Fig. 3.10 the extracted 3He Larmor frequency is shown. Variations of ωHe are in
the order of 5 · 10−4 with larger drifts during the rotation. This is due to the imperfect
matching of the two currents through the two coils. The Larmor frequency drifts slowly,
while the current through the coils is kept constant, because the mu-metal shielding
relaxes. The mu-metal adapts to the magnetic guiding field with a time constant in the
order of minutes to hours.
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Figure 3.11: The measured 3He signal amplitude for a step-by-step rotating magnetic
guiding field.

Amplitude
The measured signal amplitude is shown in Fig. 3.11. The complex structure can be
investigated and described as follows: During the periods of the static magnetic guiding
field (about 25 minutes), the amplitude decays exponentially and the corresponding
decay times T ∗2, He/Xe for the angles α = 0, π/4, π/2, ..., 5 · 2π for five revolutions can
be extracted by exponential fits to the amplitude data. The relation can be seen in Fig.
3.12, and the finding is astonishing:
The transverse relaxation time strongly depends on the direction of the magnetic

guiding field and varies between 20 h and 100 h for Helium, and between 6 h and 8.5 h
for Xenon (not shown). The characteristic pattern in Fig. 3.12 for T ∗2,He repeats itself
after every revolution and is reproduced in all successive runs over a period of at least
two weeks. For T ∗2,Xe, the characteristic pattern is similar [40]. This effect of "incidental
shimming" [61] has the following explanation: The presence of magnetic field gradients
across a sample cell causes an increased transverse relaxation rate. The origin of this
relaxation mechanism is the loss of phase coherence. For a spherical sample cell of radius
R the relaxation rate 1/T ∗2 is [77]

1

T ∗2
=

1

T1
+

4R4γ2

175D

(
|~∇By|2 + |~∇Bz|2 + 2|~∇Bx|2

)
(3.9)

with the guiding field pointing into the x-direction. γ is the gyromagnetic ratio and D
is the diffusion coefficient of the gas. It is useful to measure at low fields in order to
minimize the absolute field gradients, which are of order pT/cm inside BMSR-2. There
are two main sources of gradients: Residual field gradients from the mu-metal shielding
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Figure 3.12: The transverse relaxation time of helium as a function of the direction α
of the magnetic guiding field in the horizontal plane, measured in steps of
∆α = 45◦ for 5 turns. In total, the measurement took about 20 hours with
∼30 min for each field setting to extract the T ∗2 from the decay of the signal
amplitude. Solid line: Fit of a Fourier series to the relaxation rates 1/T ∗2 .

and gradients produced by the Helmholtz coils. The latter ones will change, as the
magnetic guiding field is rotated. At some angle α, the gradients from the chamber and
coils almost cancel each other and T ∗2 is maximized. At other angles the cancellation
is less distinct with a minimum in T ∗2 at a field orientation where the gradients add up
constructively. This is consistent with the observation that by rotating the magnetic
guiding field by 180◦ the transverse relaxation time goes from the global maximum to
the global minimum. That result gives the possibility to choose the direction of the
static magnetic guiding field accordingly in order to achieve long measurement times of
coherent spin precession.
To come back to the investigation and description of the complex shape of the structure
in Fig. 3.11: The magnetization M (proportional to the polarization) inside the sample
cell decreases with time due to the exponential decay with a rate that depends on the
angle α(t):

M (t) = M0 · exp

[∫ t

0

dt′

T ∗2 (α (t′))

]
. (3.10)

In practice, T ∗2 (α) can be estimated by fitting a Fourier series to the relaxation rates
1/T ∗2 (α = 0, π/4, π/2, ..., 5 · 2π) (see Fig. 3.12).
The measured amplitude (the magnetic flux through the SQUID area) a(t) can be
expressed by

a (t) = a0 · S (α (t)) · exp

[∫ t

0

dt′

T ∗2 (α (t′))

]
(3.11)
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with a factor S(α(t)) that takes into account geometric effects depending on the position
of the SQUID with respect to the center of the sample cell and the direction of the
magnetic guiding field. In general, the SQUID sensor is not exactly on top of the center
of the cell, but displaced to an off-center position. The position can be parameterized in
cylindrical coordinates: The vertical distance from the center of the sample cell to the
SQUID is zS , the horizontal distance rS and the angle in the horizontal plane between
the x-axis and the line connecting cell center and SQUID ϕS .
The influence of the SQUID position and α on the measured amplitude a(t) can be
explained with the help of Fig. 3.13: A SQUID with rS = 0 measures the maximal
signal when the magnetization vector M is parallel to the z-axis (directly pointing at
the detector), and correspondingly a minimal signal when M is anti-parallel to the z-
axis. This occurs for every direction α of the magnetic guiding field in the x-y-plane, so
S(α) = const. for a SQUID with rS = 0 (directly above the center of the sample cell).
However, for an off-centered SQUID the magnetization vectorM can only point directly
at the SQUID if it lies in the precession plane.3 This is the case for α − ϕS = ±π/2 (
for SQUID 1 and SQUID 2 on the left side of Fig. 3.13; and for SQUID 3 on the right
side of Fig. 3.13). For other angles, the measured amplitude is smaller and reaches a
minimum for α− ϕS = 0, π.
In principle S(α) can be calculated if the SQUID position with respect to the center

of the sample cell is known (see Appendix B on page 141). On the other hand, if S(α)
is known precisely enough by measurements, then the relative SQUID position can be
deduced. Rewriting Eq. (3.11) leads to:

acorr(α) := a0 · S (α)

= a(t) · exp

[
−
∫ t

0

dt′

T ∗2 (α (t′))

]
. (3.12)

On the right side of this equation there are measured quantities, so that acorr(α) =
a0 ·S (α) can be calculated from the experimental data and plotted. The result is shown
in Fig. 3.14 for an almost centered SQUID and two strongly off-centered SQUIDs.
As expected, the almost centered SQUID shows the maximum amplitude with only
little dependence on α. For the off-centered SQUIDs acorr strongly depends on α (with
opposing trends, similar to SQUID 1 and SQUID 3 in Fig. 3.13). This can be used
to measure the position of the sample cell with respect to the SQUID system and
subsequently the magnitude of M . In the next section this information is used to
estimate phase shifts due to the Ramsey-Bloch-Siegert shift ("cross-talk").

The weighted phase difference
The measured weighted phase difference is shown in Fig. 3.15. The complex structure
can be described as follows: The influence of Earth’s rotation (see Eq. (2.46) on p.
49) in this case is not a simple linear drift, but changes with the angle ρ between the

3On a closer look the signal is not maximal when the magnetization vector points directly at the
off-centered SQUID, but for a slightly shifted angle. This is discussed in detail in Appendix B on
page 141.
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Figure 3.13: Illustration of geometric effects concerning the measured amplitudes (sub-
sumed in S(α)) and phases. Top-view onto the spherical sample cell with
three off-centered SQUIDs with positions rS 6= 0 at ϕS,1 = π for SQUID 1,
ϕS,2 = 0 for SQUID 2 and ϕS,3 = π/2 for SQUID 3 with α = π/2 (left)
and α = π (right). Left: The magnetic guiding field is aligned parallel to
the y-axis and thus the magnetization M precesses in the x-z-plane and
SQUIDs 1 and 2 measure a higher signal (but different phases). Right:
The magnetic guiding field is aligned anti-parallel to the x-axis and thus
the magnetization M precesses in the y-z-plane and SQUID 3 measures a
higher signal (but now SQUID 1 and 2 measure the same phase).
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Figure 3.14: acorr(α) = a0 ·S (α) calculated from the measurement data according to Eq.
(3.12) for (1) an almost centered SQUID and (2, 3) two strongly off-centered
SQUIDs, arranged at (ϕS,2−ϕS,3 ≈ π/2). As expected, the almost centered
SQUID shows the maximum amplitude with only little dependence on α.
For the off-centered SQUIDs acorr strongly depends on α.

direction of the magnetic guiding field and the North-South-direction:

ωdet(t) = ΩE cos(Θ) cos(ρ(t))

⇒ ∆Φdet(t) =

(
1− γHe

γXe

)
ΩE cos(Θ)

∫ t

0
cos(ρ(t′))dt′ . (3.13)

ρ(t) in turn depends on α(t) and has to be known very precisely in order to correct for
Earth’s rotation.
Similar to the geometric effects concerning the measured amplitude, the measured phase
depends on the SQUID position and α and has to be accounted for:
The effect can be explained using Fig. 3.13: If the magnetic guiding field is aligned
parallel to the y-axis (left side of the figure), then the magnetization M precesses in
the x-z-plane and SQUIDs 1 and 2 measure different phases. SQUID 2 measures the
maximum signal earlier in time than SQUID 1. The difference in phases is roughly
∆ϕ = ϕS,2−ϕS,1 = arctan(rS,2/zS,2)+arctan(rS,1/zS,1). Inverting B0 changes the sign
of ∆ϕ. However, if the magnetic guiding field is aligned anti-parallel to the x-axis (right
side of the figure), then the magnetization M precesses in the y-z-plane and SQUID 1
and 2 measure the same phase.
The general case is discussed in Appendix B on page 141 and leads to a Fourier series
(with the additional term describing the Earth’s rotation):

∆Φc(t) = ∆Φdet(t) + a0 + a1 · t + c1 · sin(α(t)) + d1 · cos(α(t))

+ c2 · sin(2α(t)) + d2 · cos(2α(t))

+ ... (3.14)

If rS � zS , then only the c1·sin(α(t))+d1·cos(α(t)) term of the Fourier series contributes.
In Fig. 3.16 the residuals of the weighted phase difference after subtraction of the
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Figure 3.15: The weighted phase difference ∆Φ for a step-by-step rotating magnetic
guiding field.

Earth’s rotation and geometric effects are shown. The structures are reduced by many
orders of magnitude, but obviously the residuals are not Gaussian distributed. The
main reason for the structure in the order of a few mrad is the large uncertainty on
ρ(t) as the alignment of the experimental setup within the magnetically shielded room
with respect to the North-South-direction could only be measured with an accuracy of
about 1◦. Additionally, the currents through the two Helmholtz coil pairs do not fully
determine the direction of the magnetic guiding field, as the innermost mu-metal layer
reacts to the field configuration. In this case the total magnetic field (superposition of
the field produced by the coils and by the mu-metal) drags behind the field produced by
the coils. This effect can be seen in Fig. 3.10 on p. 72: The magnetic guiding field (and
the Larmor frequency) increases while the currents through the coils are kept constant.

3.3.2 Conclusion

Due to these large uncertainties in deterministic phase shifts, no competitive limits
on Lorentz invariance violation were extracted. Besides the proof of principle that a
coherent measurement of spin precession with a slowly rotating guiding field is possible
(i.e. the phase information is conserved), the results have an unexpected impact on the
measurements with static guiding fields: The results gave the possibility to optimize T ∗2
and thus the observation time for the search for a Lorentz violating coupling of spins to a
hypothetical background field. In the present experiments coherent spin precession can
be monitored for more than 24 hours (≈ 3 · T ∗2,Xe). Longer observation times T cause a
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Figure 3.16: The residuals of the weighted phase difference after subtraction of the
Earth’s rotation and geometric effects according to Eq. (3.14).

higher sensitivity in frequency measurement (σ ∝ T−3/2) according to the Cramer-Rao
Lower Bound (see next section) and, furthermore, greatly reduce the correlated errors,
especially if runs of coherent spin precession are substantially longer than the period of
a sidereal day.
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3.4 Evaluation and Results for a Static Magnetic Guiding
Field

The results of the measurements with a step-by-step rotating magnetic guiding field gave
the possibility to choose a direction α with low gradient relaxation and thus a large T ∗2
(see Fig. 3.12) with T ∗2, He ≈ 100 h and T ∗2, Xe ≈ 8.5 h. In total 7 measurement runs (j =
1, . . . , 7) with free spin precession of 3He and 129Xe and a static magnetic guiding field
were performed, each lasting about one day (≈ 3 ·T ∗2, Xe). The direction of the magnetic
guiding field was α = 0 for runs j=1, 2, 3 and α = 3/4π for runs j = 4, . . . , 7. The
corresponding angle between the magnetic guiding field and the north-south direction
was ρ1 = 208◦ for runs j=1, 2, 3 and ρ2 = 73◦ for runs j = 4, . . . , 7.
The first steps of the data evaluation are described in Section 3.2 on page 61: piecewise
fitting to the sub-cuts of the gradiometer data with the extraction of Larmor frequencies,
amplitudes and phases. The data of four independent gradiometers have been used to
finally extract the limits on Lorentz invariance violation. The lower SQUIDs of these
gradiometers were in the proximity of the sample cell and, thus, had the strongest
signals. The correlation of the gradiometer noise was close to zero, so that by using four
gradiometers the overall signal-to-noise ratio improved by a factor of two.4

In the following sections, the data evaluation procedure and the final extraction of the
parameters describing the Lorentz invariance violating effect will be presented.

3.4.1 Estimation of the Cross-Talk Amplitude

In Section 2.5.2 on p. 50 the Ramsey-Bloch-Siegert shift was described with the cross-
talk as a special case. The cross-talk emerges if there are two ore more different spin
species co-located in the same volume. In this case the cross-talk describes the shift
due to the influence of the precessing magnetization of the 3He nuclei on the 129Xe
precession frequency (and vice-versa). The 3He and 129Xe magnetizations produce ho-
mogeneous rotating magnetic fields B1 inside the spherical glass cell that influence the
other spin species. The time evolution is described by the two exponential terms with
time constants 1

2T
∗
2,Xe and 1

2T
∗
2,He. This shift is small compared to the other deter-

ministic phase shifts, as B1 is about 100 pT, typically. The actual measurements in
recent times achieved such a high sensitivity that it has to be considered during the
data evaluation procedure with the term:

∆Φct
RBS(t) = FHe · e

− 2·t
T∗

2,Xe + FXe · e
− 2·t
T∗

2,He .

The amplitudes of the cross-talk

FHe =
γ2
HeB

2
1,Xe(0) · T ∗2,Xe

4∆ω

FXe =
γHeγXeB

2
1,He(0) · T ∗2,He
4∆ω

(3.15)

can be estimated if the the field inside the cell at the beginning of the measurement
B1(t = 0) is known. The estimated values (expectation values) are denoted by F̂He and
4This is investigated in Appendix A.2 on p. 129.
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F̂Xe. In practice, the magnetic field inside the sample cell can be determined by mea-
suring the magnetic dipole field outside the spherical sample cell at different positions
and then using the well-known result from magneto-statics:
A uniformly magnetized sphere of radius R and magnetization M produces a homoge-
neous magnetic field Bin = 2µ0

3 M inside the sphere. The field outside the sphere is the
field of a dipole m = 4πR3

3 M at the center of the sphere. This result can be found in
[50], for example. The strength of the homogeneous field within the spherical sample
cell corresponds to the strength of the dipole field at the intersection point of the dipole
axis with the surface of the sphere.
For example, if there are two magnetometers exactly above the center of the sphere
(aligned along the z-axis) the determination is simple, even with an unknown distance x
from the lower magnetometer to the center of the sample cell, if the distance b (usually
b = 7 cm) between those magnetometers is known: The lower magnetometer measures a
field Blow at a distance x to the center of the sample cell, and the higher magnetometer
measures a field Bhigh at a distance x + b to the center of the sample cell. Due to the
B ∼ 1/r3 relation of the dipole field:

Blow

Bhigh
=

(b+ x)3

x3

⇒ x =
b(

Blow
Bhigh

)1/3
− 1

. (3.16)

Subsequently, the strength of the field inside the cell Bin can be calculated according to

Bin = Blow ·
x3

R3
(3.17)

where R is the radius of the spherical sample cell. For magnetometers that are not
exactly above the center of the cell the calculation can be found in Appendix B.
This procedure can be repeated for different pairs of magnetometers. The resulting
values for B1 vary in the range of 5%. Thus, 5% is used as an uncertainty estimation
on B1, resulting in uncertainties σF on FHe and FXe in the order of 10%. The trans-
verse relaxation times and the difference in Larmor frequencies can be determined very
precisely and therefore do not contribute to the uncertainties on FHe and FXe.
The strength of the homogeneous magnetic field inside the cell B1 and transverse relax-
ation times with the corresponding cross-talk amplitudes can be found in Tab. 3.1.
Those values F̂He and F̂Xe together with their uncertainties σF, He and σF, Xe are later
used as an estimate for the actual cross-talk amplitudes FHe and FXe.

3.4.2 Fitting Procedure and Results

The seven sequential measurement runs are evaluated in a combined fit. Therefore the
weighted phase difference data of the individual runs was merged into a single data set
with the corresponding timing information. t0,j is the starting time of the run (j) (with
t=0 at 15:35 UT on March 7th, 2012)5. The combined weighted phase difference data
5At t = t0,1 = 0 the local sidereal time was 2.5 h, which results in a sidereal phase of ϕs = 0.104 · 2π.
Further information on sidereal time, on the coordinate systems and transformations that are used
in this work can be found in Appendix A.1 on p. 127.
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3 Limit on Lorentz Invariance and CPT Violating Neutron Spin Interactions

Run j F̂Xe /mrad THe2 /s BHe
1 /pT F̂He /mrad TXe2 /s BXe

1 /pT

1 360 94660 229 8 25180 77

2 620 134000 252 5 26730 64

3 70 98300 99 2.3 25260 22

4 1130 271500 239 2.7 28230 22

5 320 284340 124 1.0 25600 15

6 2140 303730 311 7 26250 72

7 740 291980 187 5 24690 70

Table 3.1: The amplitudes FHe and FXe of the Ramsey-Bloch-Siegert shift (cross-talk).
The uncertainties on FHe and FXe are about 10% due to the 5% uncertainties
on BXe

1 and BHe
1 . The relaxation times and the difference in Larmor frequen-

cies can be determined very precisely (δT ∗2 = 10 s and δ∆ω < 10−5 Hz).

after subtraction of estimated linear terms ∆Φlin can be found in Fig. 3.17 (top). These
estimated linear terms are dominated by the Earth’s rotation (several rad per day)
and have been subtracted for better representation of the occurring structures in the
weighted phase difference. The remaining parabolic structure is caused by the Ramsey-
Bloch-Siegert shift (mainly the self-shift, after subtraction of the linear term from an
exponential term, the quadratic and higher order terms remain). Note the change of
sign of the self-shift from run j = 4 on where the direction of the magnetic guiding field
was changed (with major differences in the resulting field gradients).
If there is no sidereal variation of the 3He and 129Xe frequencies induced by Lorentz
invariance violating couplings, then the time dependence of the weighted phase difference
can be described best by the fit model

∆Φc(t) =


∆Φ

(1)
d (t) for t0,1 ≤ t ≤ (t0,1 +N1 · τ)

...

∆Φ
(7)
d (t) for t0,7 ≤ t ≤ (t0,7 +N7 · τ)

(3.18)

with

∆Φ
(j)
d (t) = Φ

(j)
0 + ∆ω

(j)
lin · ( t− t0,j) + E

(j)
He · e

−( t−t0,j)
T
∗ (j)
2,He + E

(j)
Xe · e

−( t−t0,j)
T
∗ (j)
2,Xe

+F
(j)
Xe · e

−2( t−t0,j)
T
∗ (j)
2,He + F

(j)
He · e

−2( t−t0,j)
T
∗ (j)
2,Xe (3.19)

where Nj is the number of sub-cuts in run j (thus, Nj · τ is the measurement time of
run j).
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3.4 Evaluation and Results for a Static Magnetic Guiding Field

So far, the fitting of the combined fit function in Eqs. (3.18) and (3.19) to the combined
data would decompose into single fits of ∆Φ

(j)
d (t) to the data of individual runs, as

the parameters describing the constant, the linear and the four exponential terms (Φ(j)
0 ,

∆ω
(j)
lin , E

(j)
He/Xe and F (j)

He/Xe) have to be adjusted for each run anew. These parameters
may vary, because the partial pressures of the gas mixture, and gradients and exact
orientation of the magnetic guiding field may vary from run to run.
However, the combined fit to the combined data is necessary for the extraction of the
hypothetical background field which would be the same for all seven measurement runs.
The combined fit to the data of all 7 runs now including the parameterization of the side-
real phase modulation due to the Lorentz invariance violating interaction was performed
with

∆Φfit(t) = ∆Φc(t) +


sinχ1 (ex · sin(Ωst+ ϕ1) + ey · cos(Ωst+ ϕ1)) , for j ≤ 3

sinχ2 (ex · sin(Ωst+ ϕ2) + ey · cos(Ωst+ ϕ2)) , for j ≥ 4

.

(3.20)

Here ex and ey are global fit parameters, whereas sinχ1/2 and ϕ1/2 are constants that
account for the different measurement sensitivities and phases (with respect to the x-
and y-components of the hypothetical background field) for the two directions of the
magnetic guiding field (the corresponding angle between the magnetic guiding field and
the north-south direction was ρ1 = 208◦ for runs j=1, 2, 3 and ρ2 = 73◦ for runs j =
4, . . . , 7, while the latitude Θ = 52.52◦ was constant). The usual choice of coordinate
frames and transformations was made as recommended in Ref. [27, pp. 7-9] and the
corresponding calculations can be found in Appendix A.1 on p. 127, resulting in:

χ = arccos(cos Θ cos ρ)

sinχ1 = 0.84

sinχ2 = 0.98 (3.21)

and with the sidereal phase of ϕs = 0.104 · 2π at t = 0:

ϕ = arctan(− tan ρ/ sin Θ) + ϕs

ϕ1 = 0.103

ϕ2 = −0.677 . (3.22)

Fitting Procedure
To simplify the explanation, first the fitting procedure to the data of a single gradiome-
ter will be discussed. Later this will be expanded to the simultaneous fitting to the data
of several gradiometers.
The fit function in Eqs. (3.20) together with (3.19) and (3.20) has the four free fit
parameters Φ

(j)
0 ,∆ω

(j)
lin , E

(j)
He , E

(j)
Xe for each run, and the two fit parameters F (j)

He and F (j)
Xe

per run with independently determined expectation values F̂ (j)
He and F̂ (j)

Xe and uncertain-
ties σ(j)

F, He and σ(j)
F, Xe from the amplitude measurements, and additionally the two free
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Figure 3.17: Top: Weighted phase difference ∆Φ (data-bin: 320 s) for all seven runs
(single gradiometer data) after subtraction of estimated linear terms ∆Φlin
(dominated by the Earth’s rotation) for better representation. The re-
maining parabolic shaped structure is the contribution of the RBS-shift (in
particular the self-shift). Note that the phase noise is much less than the
symbol size.
Bottom: The phase residuals after subtraction of the entire fit-model ∆Φc

according to Eqs. (3.18),(3.19) and (3.20). The increase of the phase noise
is caused by the exponential decay of the signal amplitudes.
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Figure 3.18: Weighted phase difference after subtraction of the entire fit-model ∆Φc

according to Eqs. (3.18), (3.19) and (3.20) divided by the phase uncertainty
to detect possible structures in the residuals. The normalized residuals
should be Gaussian distributed around zero with σ = 1.
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3 Limit on Lorentz Invariance and CPT Violating Neutron Spin Interactions

global fit parameters ex and ey. In contrast, the transverse relaxation times T ∗(j)2 can be
determined independently with high precision for both spin species from the experiment
by fits to the decaying amplitudes.
In total these are p = 44 fit parameters. On 14 of these parameters there is addi-
tional information available. Taking into account the additional information on F

(j)
He

and F (j)
Xe , the fitting procedure was not a basic χ2-minimization, but a maximization of

the likelihood L(a) including the Gaussian probability distributions for F (j)
He and F (j)

Xe :

L(a) = Norm. · exp

[
−1

2
χ2(a)

]
·
∏
j

s=He,Xe

exp

−1

2

F (j)
s − F̂ (j)

s

σ
(j)
F, s

2 , (3.23)

with the vector a including all the 44 fit parameters and

Norm. =

N∏
i=1

1

σi ·
√

2π
·
∏
j

s=He,Xe

1

σ
(j)
F,s ·
√

2π
(3.24)

is the proper normalization factor, which is of no further importance.
Here χ2 is defined as usual as

χ2(a) =
N∑
i=1

[
1

σy,i
(yi − f(ti;a))

]2

(3.25)

with the fit function f and the data-points (ti, yi) with an uncertainty σy,i on yi. N is
the number of data-points ( in this experiment: N ≈ 2 · 105).
In the case of Eq. (3.23), the maximization of L(a) is equivalent to the minimization of

χ′2(a) = χ2(a) +
∑
j

F (j)
He − F̂

(j)
He

σ
(j)
F, He

2

+

F (j)
Xe − F̂

(j)
Xe

σ
(j)
F, Xe

2 . (3.26)

In words, the additional information on F (j)
He/Xe can be treated similar to 14 additional

data-points included in the calculation of χ2. Thus, the fit parameter F (j)
He/Xe can be

adjusted to the actual value of the cross-talk amplitude (driven by the N ≈ 2 · 105

data-points), even if the estimations F̂ (j)
He/Xe are not precise.

The main advantage of using the additional information on F (j)
He and F (j)

Xe is the great
reduction of correlation in the fitting results, especially between the amplitudes of the
four exponential terms.
As the signal-to-noise ratio can be increased by using multiple gradiometers with uncor-
related noise, the final data evaluation was performed with the data of four independent
gradiometers to extract limits on the Lorentz invariance violating coefficients. The in-
dividual data sets were merged into a single one, now containing all seven runs and four
gradiometers. To do so, a pseudo-dimension g was added as an independent variable
to denote the gradiometer number (g = 1, 2, 3, 4), so that the data points now have the
form (ti, g,∆Φi, δ∆Φi), i. e. the weighted phase difference ∆Φ and the corresponding
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uncertainty δ∆Φ as a function of time ti and gradiometer number g. Then parameters
had to be added to the fit model: The constant term Φ

(j)
0 accounts for a general phase

offset that depends on the exact position of the gradiometer with respect to the sample
cell. Thus, the single constant term had to be substituted by four gradiometer depen-
dent terms Φ

(g,j)
0 . The linear and exponential terms in the fit model account for effects

that do not depend on the SQUID position (i. e. Ramsey-Bloch-Siegert shift, Earth
rotation, etc.) and, thus, must be the same for all gradiometers (but, of course, may
change from run to run). All in all these are 9 · 7 + 2 = 65 free parameters in the fit
model.
Finally, a fit of the function in Eqs. (3.20) together with (3.19) and (3.20) to the com-
bined data of all seven runs and four gradiometers was performed, i.e. minimizing χ′2

by varying the 65-dimensional vector a, in this case with ≈ 8 · 105 data points. The
fit was performed using Mathematica with the "DatFit" package of U. Schmidt (which
was originally developed for the data evaluation of Neutron Resonance Spin Echo ex-
periments, and later for the torsion pendulum experiment [22, 23] with a similar data
evaluation procedure and corresponding requirements). Here the challenge is to guar-
antee numerical stability with the large number of data points, and valid estimates
of parameters that are highly correlated in this case (especially the exponential terms
have a high correlation). As a result, values for the fit parameters together with their
correlated and uncorrelated uncertainties are extracted. Additionally, χ′2/d.o.f. as a
measure of the goodness of the fit, and the correlations of the fit parameters (in the
form of a 65 × 65 matrix) can be evaluated. In this case χ′2/d.o.f. = 1.51, and the
largest correlations occur between the four exponential terms of a single run. These
correlations are typically −0.999 if one neglects the additional information on F (j)

He and
F

(j)
Xe , but can be brought to −0.92 by including this information.

In Fig. 3.17 (top) the weighted phase difference for a single gradiometer is shown and in
(bottom) the corresponding residuals after subtraction of the fitted function. The struc-
tures are reduced by more than three orders of magnitude. As the phase noise increases
with time, it is easier to find structures in the residuals by looking at the "normalized
residuals" in Fig. 3.18 (the residuals divided by the corresponding uncertainty).

Results
From the fit, the sidereal phase amplitudes ex and ey together with their correlated and
uncorrelated uncertainties were finally extracted:

ex = (30± 34± 4)µrad
ey = (21± 45± 3)µrad . (3.27)

Note that the correlated uncertainties are one order of magnitude larger than the un-
correlated uncertainties. The results of the sidereal phase amplitudes can be expressed
in terms of the SME coefficients [27, 37]

b̃nX,Y =
1

2

h̄Ωs
γHe
γXe
− 1
· ex,y , (3.28)

assuming that the spins and the magnetic moments of the 3He and 129Xe nuclei are
determined by the valence neutron according to the Schmidt model [58]. This simple
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model results in estimations for the two components of the background field that are
perpendicular to the Earth’s axis:

b̃nX = (4.1± 4.7) · 10−34 GeV
b̃nY = (2.9± 6.2) · 10−34 GeV . (3.29)

These results can be interpreted as a new upper limit of the equatorial component b̃n⊥
of the background tensor field interacting with the spin of the bound neutron:

b̃n⊥ < 6.7 · 10−34 GeV (68% CL)
b̃n⊥ < 1.3 · 10−33 GeV (95% CL) . (3.30)

The method for the determination of the equatorial component is explained in Ap-
pendix A.3 on p. 133.
There are nuclear models available that are more accurate than the simple Schmidt
model: Theoretical calculations and experimental data indicate that the contribution
of the neutron to the 3He spin is 87% [59] (experimental data). Correspondingly, the
contribution of the neutron to the 129Xe spin is 75% [60] (theoretical calculations).
This results in more accurate values

b̃nX = (5.1± 4.9) · 10−34 GeV
b̃nY = (3.6± 7.8) · 10−34 GeV (3.31)

with the corresponding upper bounds on the equatorial component

b̃n⊥ < 8.4 · 10−34 GeV (68% Confidence Level)
b̃n⊥ < 1.6 · 10−33 GeV (95% Confidence Level) . (3.32)

3.5 Corresponding Limits on Proton Interactions

The assumption that the spins and the magnetic moments of the 3He and 129Xe nu-
clei are determined by the valence neutron (Schmidt model, [58]) is not correct. The
Schmidt model overestimates the magnetic moment for most nuclei. In [5] Y. Stadnik
and V. Flambaum calculated the neutron and proton contributions to the nuclear spin
for several nuclei of experimental interest. They showed that the 3He and 129Xe system
is also very sensitive to the coupling of the proton spin to a hypothetical background
field.
The different contributions to the nuclear magnetic moment µ can be expressed as

µ

µN
= gp < szp > +gn < szn > +gl < lzp > (3.33)

with the nuclear magneton µN , the expectation values of the total neutron and proton
spins < szn > and < szp >, and the expectation value of the total proton orbital momen-
tum < lzp >. The gyromagnetic factors are gp = 5.586, gn = −3.826 and gl = 1.
Taking the experimental values of the magnetic moments of the nuclei (and neglecting
spin-orbit interaction), Stadnik and Flambaum calculated the proton and neutron spin
contributions. In particular with < lzp >= 0 for 3He and 129Xe:

< szp >He = 0.000

< szn >He = 0.500 (3.34)
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and

< szp >Xe = 0.135

< szn >Xe = 0.365 . (3.35)

In words, for 3He the Schmidt model is valid and the magnetic moment of 3He is
determined by the valence neutron. However, for 129Xe the proton contribution is
large. Therefore, the 3He and 129Xe system is also sensitive to the proton interaction
parameters of the SME [5]:

b̃nX + 0.74 · b̃pX = (7.1± 8.2) · 10−34 GeV

b̃nX + 0.74 · b̃pY = (5.0± 10.8) · 10−34 GeV (3.36)

with the corresponding upper limit of the equatorial component b̃p⊥ of the background
tensor field interacting with the spin of the bound proton:

b̃p⊥ < 1.6 · 10−33 GeV (68% Confidence Level) . (3.37)

This value improves the previously best limit by a factor 35.

3.6 Phase Stability, Sensitivity Estimation and Systematic
Uncertainties

The obtained values in Eq. (3.31) including uncertainties are a direct result of the
fitting procedure. Of course, it is necessary to check for possible systematic errors and
to check the validity of the uncertainty estimates. In this case, the Lorentz invariance
violating interaction would cause a sinusoidal phase shift with the period of a sidereal
day and it has to be excluded that other effects with a similar time structure occur.
Otherwise it would be possible that these effects mask the fundamental interaction
under investigation leading to a false negative result - or produce a false positive result
by a fake signal.
In this section the phase stability is investigated, finally leading to a statistical sensitivity
estimation and upper bounds on systematic uncertainties.
A first (rough) step to check for the phase stability is to have a look at the phase
residuals: The reduction of the structures in the weighted phase difference data by
three orders of magnitude (see Fig. 3.17 and 3.18) indicates that the time structures of
all deterministic phase shifts (linear shifts, cross-talk and self-shift) are well described by
the fit model. An incorrect fit model would cause a structure in the residuals, meaning
that the residuals are not Gaussian distributed. For example, Fig. 3.19 shows the
residuals of the weighted phase difference data of a single run if one omits the cross-talk
terms in the fit model.
In the following paragraphs a quantitative and very sensitive method to investigate the
phase stability (and systematic effects) is discussed.

The Cramer-Rao Lower Bound
The goal of the 3He-129Xe comagnetometer is to find additional interactions that are of
non-magnetic type by looking for tiny frequency or phase shifts. Thus, it is essential to
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Figure 3.19: The residuals of the weighted phase difference data of a single run (j=6)
with a fit model without the cross-talk terms. The residuals are clearly not
Gaussian distributed around zero (unlike the residuals using the complete
fit model, compare Fig. 3.17).

perform the data analysis in such a way that the phase or frequency estimator is the
optimal estimator: unbiased and with the minimum variance.
The statistical methods in signal processing derived by Harald Cramer and Calyampudi
Radhakrishna Rao have proven to be extremely useful in practice: The Cramer-Rao
Lower Bound (CRLB) gives the minimum variance of an unbiased estimator of a deter-
ministic parameter. Thus, the final experimental result (after all the data analysis has
been performed) can be compared to the CRLB, providing a benchmark.
In this case, the sensitivity of phase or frequency measurements depends on the mea-
surement time with coherent spin precession T , the signal amplitude at the beginning
of the measurement A decaying with a time constant T ∗2 and the noise level ρ (assuming
white noise) [38, 40, 51]. The uncertainty in the frequency of the signal with a constant
frequency is:

σf ≥
√

3

π

ρ

A
· T−3/2 ·

√
C(T, T ∗2 ) (3.38)

with the dimensionless factor C(T, T ∗2 ) accounting for the exponential decay of the
signal-to-noise ratio (C(T, T ∗2 ) ≈ 1.7 for T = T ∗2 , details in [38]). The remarkable result
is that the uncertainty in frequency decreases with T−3/2 for an optimal estimator.
Correspondingly, the uncertainty in phase determination of the signal with a constant
frequency is:

σΦ ≥
√

3

π

ρ

A
· T−1/2 ·

√
C ′(T, T ∗2 ) . (3.39)
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Here the uncertainty in phase decreases with T−1/2.
The measurement results can be compared to these lower bounds. In particular, it can
be tested if the results follow the power-laws T−1/2 and T−3/2.

The Allan Standard Deviation
The Allan Standard Deviation (ASD) [38, 55–57] (named after David W. Allan) is
the most convenient measure to study the temporal characteristics of the 3He-129Xe
comagnetometer with respect to phase or frequency determination. The ASD method
is an established analysis technique for studying the low-frequency component of a
time series and is a measure of phase and frequency stability in clocks, oscillators and
amplifiers. For example, one can compare the stability of two oscillators by measuring
the phase difference ∆Φi of the two signals at equidistant times ti = i·∆t (i = 0, ..., N−1)
with the total measurement time N ·∆t.
These samples ∆Φi are then divided into S consecutive groups, so that each group has
n consecutive samples ∆Φi. Then the corresponding averages over the time τ = n ·∆t
are calculated:

∆Φj(τ = n ·∆t) =
1

n

(n+1)j∑
i=n·j

∆Φi . (3.40)

The Allan Variance is now defined as

σ2
Φ(τ) =

1

2S − 2

S∑
j=0

[
∆Φj+1(τ)−∆Φj(τ)

]2 (3.41)

and the Allan Standard Deviation σΦ(τ) is the square-root of the Allan Variance.
Typically, τ is varied (by varying n) and the results are plotted as a function of the in-
tegration time τ to study the temporal characteristics of the oscillators and to identify
the power-law model of the phase noise under study. Especially low-frequency noise and
drifts can be evaluated.
In the case of the 3He-129Xe comagnetometer, the phase difference ∆Φi is just the
weighted phase difference after subtraction of all deterministic phase shifts, i.e. one
compares the 3He precession signal (the first oscillator) to the "scaled" 129Xe preces-
sion signal (the second oscillator). These two oscillator frequencies are supposed to
be the same if all deterministic phase shifts (chemical shift, Earth’s rotation, Ramsey-
Bloch-Siegert shift etc.) have been incorporated correctly. Taking the single run phase
residuals from Fig. 3.17 (bottom), the behavior of the phase uncertainty in the ASD
plot is shown in Fig. 3.20 (top) and the corresponding frequency uncertainty in the
ASD plot in Fig. 3.20 (bottom). With increasing integration times τ the uncertainty in
phase decreases with σASD ∝ τ−

1
2 down to the ≈ 10 µrad level and the uncertainty in

frequency with σf, ASD ∝ τ−
3
2 down to the ≈ 10 pHz level as expected by the CRLB in

Eqs. (3.39) and (3.38). This indicates the presence of pure white (Gaussian) noise. In
other words: All deterministic phase shifts (chemical shift, Earth’s rotation, Ramsey-
Bloch-Siegert shift etc.) have been incorporated correctly. This has been tested for all
measurement runs with different experimental conditions (e.g. different sample cells,
partial pressures, magnetic field directions, T ∗2 ) and the ASD plot shows the expected
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behavior leading to the conclusion that the fit model in Eq. (3.19) describes the behav-
ior of the comagnetometer correctly. An incorrect fit model would immediately lead to
a deviation from the CRLB power law. This is demonstrated in Fig. 3.21 showing the
ASD (phase and frequency) as a function of τ for the residuals of a fit model where the
cross-talk term is omitted. Here the data of run j = 6 were used, the run with largest
cross-talk term (compare Tab. 3.1). The large deviation from the CRLB power law
above a few hundred seconds is impressive. For run j = 3 (the run with the smallest
cross-talk term) the deviation in the ASD plot is smaller (Fig. 3.22).

Systematic Uncertainties

In this case, the Lorentz invariance violating interaction would cause a sinusoidal phase
shift with the period of a sidereal day. It has to be excluded that other effects with
a similar time structure occur. Otherwise it would be possible that these effects mask
the fundamental interaction under investigation leading to a false negative result - or
produce a false positive result by a fake signal. A possible source could be a temperature
drift leading to small changes in the position of the SQUIDs with respect to the sampele
cell. As the measured phase depends very sensitively on the SQUID position (see p. 76)
this might cause such a periodical phase shift.
Different sources of deterministic phase shifts have been discussed above and were inte-
grated into the fit model. Correlations between the fit parameters describing the Lorentz
invariance violating effect and deterministic phase shifts due to a partly similar time
structure have been accounted for during the fitting procedure and contribute to the
correlated uncertainty. The absence of further systematic effects or deterministic phase
shifts can be shown by looking at the runs individually. Especially runs with different
magnetic field directions are of interest: The phase of the modulation due to the Lorentz
invariance violating effect depends on the direction of the magnetic guiding field (see
section 3.22 on p. 83 and Appendix A.1 on p. 127). However, it is very unlikely that the
phase of temperature dependent shifts would change by the same amount. Therefore
by looking at the ASD plots of runs with different magnetic guiding field directions one
can exclude that other effects with a similar time structure occur. The absence of any
deviation from the CRLB power law down to ≈ 10 µrad (see Fig. 3.20) indicates that
the time structures of all phase shifts in the system are well described by the fit model.
Possible systematic uncertainties are in the < 10 µrad range, i.e., the sensitivity range
set by the uncorrelated uncertainty. The uncertainties in the parameters describing the
Lorentz invariance violating effect are dominated by correlated statistical uncertainties
(≈ 40 µrad in Eq. (3.27)) and are the result of the combined fit to all seven measurement
runs. Thus, the systematic uncertainties are significantly smaller than the correlated
uncertainty which sets the present upper limit on LV effects. The systematic checks have
been performed with great care and include the use of different cells, the variation of the
applied magnetic field direction as well as partial pressure (2-8 mbar 3He), polarizations
(factor 3) and T ∗2 (from 26 h to 85 h for 3He). The ASD follows the CRLB power law
for all of the experimental configurations. Thus systematic effects have found to be of
no concern at the current sensitivity limit of the 3He-129Xe comagnetometer which is
clearly set by statistical uncertainties.
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Figure 3.20: Allan Standard Deviations (ASD) of the residual phase noise (top) and the
corresponding frequency noise (bottom) of a single run (j = 6). The total
observation time was T = 90000 s. With increasing integration times τ the
uncertainty in phase decreases with σASD ∝ τ−

1
2 and the uncertainty in

frequency with σf, ASD ∝ τ−
3
2 indicating the presence of white (Gaussian)

noise.
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Figure 3.21: Allan Standard Deviations (ASD) of the residual phase noise of a single run
(j = 6) if one does not integrate the Cross-Talk term into the fit model (see
Fig. 3.19). For short integration times τ < 300 s the uncertainties decrease
according to the CRLB power law, but then strong deviations occur due to
the Cross-Talk phase shift that has not been accounted for.
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Figure 3.22: Comparison of the Allan Standard Deviations (ASD) of the residual phase
noise (top) and frequency noise (bottom) of a single run (j = 3) for the
correct fit model (black) and if one does not integrate the Cross-Talk term
into the fit model (gray). In run j = 3 the influence of the Cross-Talk is
smaller compared to Fig. 3.21.
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3.7 Conclusion and Outlook

In the preceding sections, the experiments and methods of data evaluation have been
described that put a limit on a Lorentz invariance and CPT violating coupling of the
(bound) neutron spin σn to a hypothetical background field b̃n. Such a coupling of the
form

V = −b̃n · σn . (3.42)

is motivated within the minimal Standard Model Extension. The experimental result
was found to be compatible with zero

b̃nX = (5.1± 4.9) · 10−34 GeV
b̃nY = (3.6± 7.8) · 10−34 GeV . (3.43)

The corresponding upper limits on the equatorial component are

b̃n⊥ < 8.4 · 10−34 GeV (68% Confidence Level)
b̃n⊥ < 1.6 · 10−33 GeV (95% Confidence Level) . (3.44)

This is an improvement by a factor of 50 compared to the year 2009 measurements with
the 3He-129Xe comagnetometer [37] and an improvement by a factor of 4 compared to
the former best limit measured by a 21Ne-Rb-K comagnetometer [13].
Furthermore, the data can be used to extract the corresponding limits on proton inter-
actions: b̃p⊥ < 1.6 · 10−33 GeV.
The gain in measurement sensitivity compared to the year 2009 measurements mainly
arises from two improvements: Firstly, the SNR could be increased by a factor of 4
thanks to the higher xenon polarization of PXe ≈ 40% and the use of four independent
gradiometers. Furthermore, with the larger size of the spherical glass cells, the longitu-
dinal wall relaxation time which scales like T1,wall ∝ R could be improved by a factor of
2 for both gas species, i.e., THe1,wall ≈ 165 h and TXe1,wall ≈ 15 h. Furthermore the gradients
of the magnetic guiding field could be reduced. In particular for xenon, that resulted
in a significant increase of the transverse relaxation time of T ∗2,Xe ≈ 8.5 h compared to
T ∗2,Xe ≈ 4.5 h in 2009 [37]. Thus, coherent spin-precession could be monitored for more
than 24 hours (≈ 3·T ∗2,Xe), whereas typical measurement times in 2009 were limited to 14
hours. The longer periods of coherent spin precession had another advantage, inasmuch
as the correlated uncertainty which sets the present sensitivity limit of our 3He-129Xe
comagnetometer could be drastically reduced. The large correlated uncertainty (σcorr)
on the sidereal phase modulation is caused by a partly similar time structure of ∆Φc(t)
and the function describing the sidereal phase modulation.
Several future improvements are feasible. Presently, the relatively short T ∗2,Xe, essen-
tially set by T1,wall, limits the total observation time T of free spin-precession. Efforts
to increase T1,wall considerably (e.g. by increasing the radius of the measurement cell)
are therefore essential. Besides gain in phase sensitivity according to the T−

1
2 power

law (CRLB), the still dominating correlated uncertainty will approach the uncorrelated
one. Furthermore, successive measurement runs can be extended to a period of about
100 days. The long time span gives the possibility to measure an annual variation of a
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daily sidereal modulation to extract limits on boost-dependent Lorentz invariance and
CPT violating effects like in Ref. [21].
Furthermore, measurements using a slowly rotating magnetic guiding field have been
described. Though the results of these measurements did not flow into the final limits
on Lorentz invariance violation a lot of knowledge about the behavior of the comagne-
tometer, the mu-metal shielding and the measurement system etc. could be derived.
Finally, this led to an optimization procedure with respect to gradient relaxation that
will be also applied in future measurements. Spin coherence could be maintained for a
very long time with T ∗2,Xe ≈ 8.5 h and T ∗2,He ≈ 100 h.
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4 Preparations for the Measurements of the
Electric Dipole Moment of 129Xe

This experiment is an attempt to measure the atomic Electric Dipole Moment (EDM) of
129Xe using a 3He-129Xe comagnetometer. The following chapter addresses the prepara-
tions and experimental efforts to measure the EDM of 129Xe. Developments that have
been made at Heidelberg as a part of this dissertation are described in detail, whereas
contributions from other parts of the collaboration are shortly summarized.
To repeat the concept of measurement: A permanent EDM d of a fundamental or com-
posite particle must be aligned parallel to the spin, as the spin is the only available
vector for an eigenstate of the isolated particle. Thus, for a magnetic guiding field
aligned along the z-direction, the Hamiltonian has the form H = −µ ·B0 − d ·Ez, with
the corresponding frequency shift δωEDM = 2

h̄d ·Ez. By varying the z-component of the
electric field Ez, the frequency shift is modulated correspondingly. As mentioned before,
the principle of comagnetometry is applied to become insensitive to drifts of the mag-
netic guiding field. Subsequently, a non-zero EDM will manifest in a modulation of the
weighted phase difference, and the corresponding value d can be extracted. In the case
of a result that is compatible with zero, upper limits can be deduced. EDMs of particles
are closely connected to CP-violation as described in the introduction, and therefore
corresponding limits on CP-violation can be inferred. The goal of this experiment is
to significantly improve the current limit on the 129Xe-EDM. The best measurements
up to now have been performed at the University of Michigan in the year 2000 by M.
A. Rosenberry and T. E. Chupp [73, 74]: d = (0.7± 3.3stat ± 0.1syst) · 10−27 ecm. This
value is a result of 125 runs, each lasting between eight hours and several days.
In the following sections, the technical developments and modifications of the experi-
mental set-up will be presented first. Afterwards the sensitivity of the comagnetometer
will be estimated based on the Lorentz invariance violation data (see Chapter 3). Then
possible systematic effects and measurement strategies to detect or avoid them will be
discussed. Finally, an outlook on future developments will be given.

4.1 Experimental Technique

Major changes of the experimental set-up have been performed and are still going on.
Parts of the experiment that changed (compared to the Lorentz invariance violation
measurements) will be presented at this point.

4.1.1 The Magnetically Shielded Room and the Generation of the
Magnetic Guiding Field

To improve the current limit on the EDM of 129Xe by many orders of magnitude (after
first measurements as a proof-of-principle), subsequent runs with a total measurement
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time in the order of 100 days will be required. Additionally, systematic tests have to be
performed carefully (see below). This requires to have access to a magnetically shielded
room for several months without interruption.
Such a room with two layers of mu-metal and a single layer aluminum is available at
Forschungszentrum Jülich. The shielded room is used for high-temperature SQUID sys-
tem development with the corresponding applications in biomagnetism and medicine
(e.g. adult and fetal magnetocardiography and low-field NMR). An additional mu-
metal cylinder is placed in the center of the room to reach the necessary conditions
with respect to magnetic noise and field gradients. Subsequently, the measurement cell
containing the polarized 3He and 129Xe gas and the SQUID measurement system have
to be placed inside the cylinder, as well as the coils that produce the magnetic guiding
field. Therefore, the large square Helmholtz coils, that have been used for the Lorentz
invariance measurements, have to be replaced. A current density j(ϕ) ∝ cos(ϕ) · ẑ on
the surface of a cylinder with infinite length (where ϕ is the azimuth angle and ẑ is
a unit vector pointing along the cylinder axis) produces a homogeneous magnetic field
inside the cylinder perpendicular to the cylinder axis. A coil with such a current density
(approximated by currents through wires) is called a cosine-coil. The resulting homo-
geneity of the magnetic field depends on the number of wires and the precision of the
manufacturing. In addition to the cosine-coil, conventional Helmholtz coils are installed
to produce a magnetic field parallel to the cylinder axis in order to manipulate the
sample spins (e.g. non-adiabatic switching). As these coils are only needed for a short
period at the start of the experiment, the requirements concerning field homogeneity
are not as high.
In order to reach long transverse relaxation times, it is necessary to minimize the mag-
netic field gradients (see Eq. (2.36)). This can be done by additional shimming coils
that produce inhomogeneous fields (Anti-Helmholtz coils along the cylinder axis, and
saddle coils perpendicular to the cylinder axis) to compensate the gradients.
The design of the coils, the corresponding calculations (e.g. influence of the mu-metal
cylinder on the homogeneity) as well as the construction of the coils and the supporting
structures was done by S. Zimmer (Institut für Physik, Uni Mainz) and O. Grasdijk
(KVI, Uni Groningen).

4.1.2 The Design of the Sample Cell

For the EDM measurements, an electric field has to be applied in a controlled way.
For example, it would not be possible to use the spherical sample cells and apply an
electric field by using external capacitor plates, because the glass wall of the cell would
charge up and reduce the field inside the sample cell in an uncontrollable way. There-
fore, cylindrical cells have been developed with the end planes made of silicon wafers
and the lateral surface made of the usual low-relaxation GE-180 glass. The distance
between the electrodes is 6 cm and the maximum voltage that can be applied is 12 kV
(see below). Thus, the maximum resulting electric field parallel (or anti-parallel) to the
magnetic field is Ez = 2 kV/cm. The cell is surrounded by a housing made of conductive
plastic at ground potential to protect the SQUID-system against flash-overs (see Fig.
4.1). This housing is filled with SF6 to suppress flash-overs and to minimize leakage
currents.
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Figure 4.1: Principle drawing of the cylindrical sample cell with two silicon electrodes
inside a conductive housing at ground potential. The housing is filled with
SF6 and the sample cell is filled with a mixture of 3He, 129Xe and SF6. The
housing is placed directly below the cryostat. For further information on the
high voltage feed-through and shielding electrodes see p. 103.
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Figure 4.2: The housing of the EDM cell made of conductive plastic (PE with graphite
additives) constructed by A. Scharth and S. Zimmer (Institut für Physik,
Uni Mainz).
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4.1.3 The Leakage Current Detection and High Voltage Supply

Currents associated with the high voltage give rise to a systematic error (see p. 115).
Therefore, the currents that flow in the proximity of the sample cell, especially between
the two electrodes, have to be monitored. These currents are in the pA range. At
voltages of a few kV, usually the currents flowing through the insulation of the cables
are much higher and cannot be easily separated from the currents that flow across the
EDM cell. Thus, the following principle was applied to measure the EDM cell leakage
currents (see Fig. 4.1 and 4.3):
The conductor, that contacts the Si-electrode of the EDM cell (and keeps it at the high
potential, e.g., +5 kV with respect to ground), is always surrounded by an insulating
layer, and then by a conductive shielding that is at the same potential as the innermost
wire. Then an additional insulating layer and a conductive shielding at ground potential
follow. Therefore, the voltage between the innermost wire and the first shielding is
always zero, and consequently the leakage current through the first insulating layer is
also zero. The high voltage between the first and second shielding (in this case 5 kV)
leads to leakage currents through the second insulating layer. However, these currents do
not flow through the innermost wire. Consequently, by measuring the current through
the innermost wire, one measures the current that flows directly from the one electrode
of the EDM cell to the other. A possible path would be the inner or outer surface of
the glass wall, or a current directly through the cell volume by ionized gas particles.
Currents directly flowing from the electrode to the conductive housing are suppressed
by additional shielding electrodes.
This principle of double shielding was maintained throughout all connections from the
electrodes to the Picoamperemeter (pA-meter) (see Fig. 4.3): The connection inside
the housing is made of several concentric plastic tubes, either conductive (by graphite
additives, R ≈ 20 MΩ) or insulating polyethylene. These materials - as all materials in
the proximity of the EDM cell - are non-magnetic. For the connection to the pA-meters,
which are placed outside the mu-metal cylinder, a special cable was manufactured. It
consists of a coaxial cable inside a silicone hose (wall thickness: 3 mm). The silicone
hose is surrounded by a copper wire mesh, fixed by shrink-on tube. The high voltage
is between the inner and outer shielding, e.g., across the wall of the silicone hose. The
dielectric strength of silicone rubber is ≈ 30 kV/mm, so there is plenty of safety margin.
(Tests have been performed with a voltage up to 30 kV.)

The Picoamperemeter
As the current through the innermost wire has to be measured, the pA-meter has to be
placed at the high potential. To do so, the pA-meter circuit boards (see below) and a
battery are placed in an aluminum box. This conductive box is surrounded by an insu-
lating plastic housing, so that the whole inner box can be kept at a high potential with
respect to the surroundings at ground potential (via the high voltage supply, see below).
The pA-meter is read out via an optical interface (insulating optical fibers). The inner
shielding of the double shielded cable is directly connected to the aluminum housing
of the pA-meter, whereas the innermost wire connects the input of the pA-meter with
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Figure 4.3: Principle drawing of the leakage current detection with double shielded ca-
bles and connections, and the pA-meter at the high potential. The connec-
tions and the pA-meter for the first electrode are shown. The setup for the
other electrode is the same (with a separate pA-meter).

the electrode of the cell. The pA-meter itself was developed in close collaboration with
the electronics workshop of the Physikalisches Institut, Uni Heidelberg (V. Angelov). It
consists of an integrator IC (IVC102 from Burr-Brown/Texas Instruments) with a low
bias-current precision operational amplifier and various integration capacitors on chip
(10, 30 and 60 pF and their combinations selectable by external switches). The volt-
age of the (inverting) integrator output V depends on the capacity Cint and the actual
charge Q of the capacitor: V = −Q · 1

Cint
. The integrator output is digitalized by an

12 bit ADC (ADS7835 from Burr-Brown/Texas Instruments) with a typical sampling
frequency fs = 10 Hz , and send to a micro-controller (Atmel XMEGA32A4) that trans-
mits the data to a measurement PC outside the shielded room. The actual current can
be extracted by taking the derivative of the voltage output: I = dQ

dt = −Cint · dVdt . The
calibration factor Cint can be roughly estimated from the data sheet (max. deviation
from the nominal value: 20%, with 2.5·10−5/K temperature drift), but can be measured
independently (see below).
Additionally, the current can be determined by a second method: The voltage of the
integrator output is processed by four comparators. The comparator thresholds can
be adjusted individually by DACs, and the comparator outputs are connected to input
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pins of the micro-controller. Two of the comparators are intended for positive output
voltages. For example, the thresholds are set to Vlow = 0.5 V and Vhigh = 4.5 V, re-
spectively. Let’s assume that the capacitor is fully discharged at the beginning. Then,
for a negative input current the integrator output voltage will rise and reach the Vlow
level. The corresponding comparator output triggers a timer inside the micro-controller.
Eventually, the Vhigh level is reached and the comparator gives the stop signal for the
timer. The measured time span ∆t between start and stop signal is transfered to the
measurement PC. The mean current can be calculated according to I = −Cint·

Vhigh−Vlow
∆t .

For positive input currents the integrator output voltage decreases with time. Thus, the
two remaining comparators are set to negative voltages. E.g., the timer is triggered as
soon as the voltage drops below -0.5 V and stopped when the voltage reaches -4.5 V.
The voltage output is limited by the supply voltages (+6 V and -6 V) and the integrator
has to be reset from time to time if the input current is non-zero. The integrator reset
is triggered by either the high positive or negative comparator (4.5 V or -4.5 V), the
same signal that stops the timer. This signal causes an interrupt of the micro-controller,
which immediately closes the switch that discharges the capacitor Cint (see Fig. 4.3).
After roughly 5 µs the capacitor is completely discharged and the switch opens again.
The opening of the switch causes slight disturbing signals. Therefore, the low compara-
tor levels that start the timer are set to 0.5 V and -0.5 V, respectively, instead of 0 V.
The two measurement methods are intended for different input current ranges: For cur-
rents below 100 pA the time between two integrator resets becomes longer than 1 s
(assuming Cint = 100 pF) and the current is best monitored by taking the derivative
of the voltage measured by the ADC. For higher currents the time between integrator
resets becomes shorter and eventually the ADC sampling frequency fs = 10 Hz is to
low to resolve the voltage changes. Then the second method of measurement should be
applied.

Calibration and Performance of the Picoamperemeter
The pA-meter can be calibrated by feeding a known current into the input. This current
has to be in the order of the expected leakage current through the EDM cell, which is 1
to 10 pA. To generate such small currents in a well-defined way, the circuit in Fig. 4.5
was used. An arbitrary waveform generator was programmed, so that the output voltage
Ugen has a trapezoidal form with a linear increase of the voltage from 0 to U0 = 10 V
in 100 seconds. Then the voltage stays constant for 100 s and linearly decreases to zero
in 100 s. This waveform is repeated (see Fig. 4.7 top). The generator was coupled
to the input of the pA-meter via an ceramic capacitor with Cext = 12.1 ± 0.2 pF. A
class 1 capacitor was used that offers high stability and a high insulation resistance
(Rleak ≈ 1015 Ω). The external current that is fed into the input is

Iext =
dUgen

dt
· Cext + Ugen ·Rleak . (4.1)

Additionally, there are offset currents Ioffset on the printed circuit board and directly
inside the IC that flow into the integrator input of the pA-meter. So the total input
current is I = Iext + Ioffset. The offset current was measured with Ugen = 0 and the
result can be seen in Fig. 4.6.
The described generator waveform has three phases (see Fig. 4.7): The rising generator
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Figure 4.4: The measured leakage current of the EDM cell for a high voltage of 1 kV.
The insulation resistance of the EDM cell is in the order of R = 1015 Ω.
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Figure 4.5: Schematic diagram of the pA-meter calibration circuit. A generator is cou-
pled to the input of the pA-meter via an ceramic capacitor with a capacity
of Cext = 12.1± 0.2 pF and an insulation resistance Rleak ≈ 1015 Ω. There
are additional offset currents Ioffset on the printed circuit board and directly
inside the IC that flow into the integrator input of the pA-meter.
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Figure 4.6: The pA-meter offset current Ioffset ≈ 60 fA (measured with Ugen = 0).

voltage causes a constant positive input current I = 1.2 pA. Then for Ugen = const. =
U0, the capacitor leakage resistance Rleak can be measured. In this case, Rleak > 1014 Ω
was found. Therefore, leakage currents through the capacitor are negligible small. Then,
the falling generator voltage causes a constant negative input current (I = −1.2 pA).
These values have been used to calibrate the pA-meter. The largest uncertainty is
caused by the offset currents on the printed circuit board and directly inside the IC that
flow into the integrator input of the pA-meter, as these currents vary with time (see
Fig. 4.6).

High Voltage Supply
The EDM cell is surrounded by a housing made of conductive plastic at ground potential.
To keep the set-up symmetric, it proves beneficial to split the high voltage symmetrically:
The first electrode is set to ±5 kV, while the second electrode is set to ∓5 kV with respect
to ground potential (instead of keeping the first electrode at ground potential and the
second electrode at +10 kV or -10 kV). Therefore, a two-channel high precision high
voltage supply (NHQ 246L 0n1) by Iseg [95] is used. One of the channels is set to negative
output voltage and the other one to positive output voltage (the polarity can be changed
manually by switches, but this is not used for this experiment). The output voltages (0
to +6 kV resp. 0 to -6 kV) of the NHQ are set remotely via RS232. Additionally, the
output voltages and currents can be monitored remotely with a resolution of 100 mV
and 100 pA. The ripple of the NHQ output voltage is less than 5 mV (peak to peak).
The ripple is further reduced by RC low-pass filters (see Fig. 4.8). As the polarity of the
voltage has to be invertible, four high voltage relays (Cynergy 3 DAT71215) are used
to select the negative or positive voltage supply individually for each electrode. Large
resistors at the output prevent large currents, for example, in the case of flash-overs.
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Figure 4.7: Calibration of the pA-meter. Top: Waveform of the generator output volt-
age. Bottom: Corresponding measured input current for U0 = 10 V and
Cext = 12.1 pF. The input current is +1.2 pA for increasing input voltage,
and -1.2 pA for decreasing input voltage. The uncertainty is about 2% for
input currents in the pA range (stemming from the uncertainty on Cext).
For smaller currents, the largest uncertainty is caused by the offset currents
that flow into the integrator input of the pA-meter, as these currents vary
with time (see Fig. 4.6).
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Figure 4.8: Schematic diagram of the High Voltage supply unit. A two-channel Iseg
NHQ provides the positive and negative high voltages. The four relays are
used to select the negative or positive voltage supply individually for each
electrode. The relays and the NHQ are controlled by a micro controller that
communicates with the measurement PC outside the shielded room via an
optical serial interface.

The possibility to connect the electrodes to the negative or positive voltage individually
has big advantages for systematic tests. For example, both electrodes could be set to
+5 kV to investigate the influence of leakage currents that flow from the electrodes
directly to the conductive housing at ground potential, while the electric field across the
EDM cell is zero.
The relays and the NHQ are controlled by a micro-controller (Atmel XMEGA 32 A4)
that communicates with the measurement PC outside the shielded room via an optical
serial interface.

4.1.4 The SQUID and Data Acquisition System

The SQUID system uses a liquid helium cryostat manufactured by Cryoton. It is a low
magnetic noise fiberglass model (LH-16.4-NTE) and was tested to contain no magneti-
zable material (e.g. small ferromagnetic particles). The cryostat has a total length of
900 mm and a diameter of 307 mm at the upper part. A finger with a smaller diameter
127 mm and a length of 200 mm is attached to the lower side. Here the distance between
the inner volume at liquid helium temperature and the outside at room temperature is
14 mm. The inner volume (about 16 liters) is filled with liquid helium, which keeps the
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Figure 4.9: Principle of the SQUID data acquisition system. The left dashed box con-
tains the components that have been developed and manufactured by Mag-
nicon [94], whereas the power supply and the data acquisition system (right
dashed box) have been developed in Heidelberg as a part of this thesis.

lower part of the dewar cold for eight days without refilling.
The SQUIDs, the corresponding electronics and mechanical supporting structures inside
the dewar ("Probenstab") have been manufactured by Magnicon [94], while the data
acquisition system was developed as a part of this dissertation.

The data acquisition system
Before explaining the components of the data acquisition system in detail, the whole
set-up will be shortly summarized (see Fig. 4.9). Each individual gradiometer has a
SQUID module in a niob shield at liquid helium temperature inside the cryostat. The
three SQUID modules, that are used in this set-up, are controlled and read out by a
three-channel FLL module, which is placed on top of the cryostat at room temperature.
The connector box can connect several FLL modules (in case there are more than three
gradiometers/magnetomters) and contains several filters (e.g. for the power supply).
The SQUID system, as delivered by Magnicon, is shown schematically in Fig. 4.9 (left
dashed box). It is controlled via RS-485, a very robust balanced serial interface widely
used in low-speed communication for mostly industrial applications. The output signals
of the SQUID electronics are analog voltage signals in the range of -10 to +10 V.
The development of the controlling unit of the SQUID electronics and the data acqui-
sition system (DAQ) was a part of this doctoral thesis. The levels of the analog input
signals are adjusted (amplitude and offset voltage) by a level shifter. Then the signals
are digitalized by analog-to-digital converters (ADCs). The ADCs are controlled and
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read out by a micro-controller that also communicates via RS-485 with the FLL module
and via an optical link with the measurement PC. The whole system is placed inside the
magnetically shielded chamber and battery-powered with the optical link being the only
connection to the outside (the same principle as for the current sources, see p. 41; and
the high-voltage system). Thus, environmental magnetic noise is effectively excluded
from the measurement system.
The components of the DAQ have been chosen to meet the requirements with respect
to noise, resolution, phase linearity, timing, and frequency of the sampling:
1) The noise level of the DAQ should not contribute significantly to the measured signal
noise. The estimated magnetic noise due to impurities in the cryostat etc. is 2 fT/

√
Hz

and the intrinsic SQUID noise is comparable to that value. The SQUID calibration
factor (the ratio between the output voltage and the magnetic field) is 20 mV/pT, typ-
ically (but this value depends on the area of the pick-up loop, the FFL gain and the
the feedback resistor Rf ). Thus, the the input noise level of the DAQ should be below√

2 · 2 fT/
√
Hz · 20 mV/pT = 56 µV/

√
Hz.

2) ADCs with a resolution of 24 bits are widely available in standard ICs. For 24 bit reso-
lution at an input range from -10 to 10 V, 1 LSB corresponds to 20 V/(224−1) ≈ 1.2 µV,
which is sufficient.
3) As the 3He-129Xe comagnetometer measures phases very precisely, it must be ensured
that the phase of the measurement signal is not shifted. Especially components that
shift the phase of the measurement signal depending on the frequency are very criti-
cal and have to be avoided. Low-pass filters (e.g. analog RC filters) that are usually
present in DAQ systems as anti-aliasing filters have to be constructed very carefully.
For example, if a simple RC anti-aliasing filter with a cut-off frequency ω0 is applied,
the phase shift is ∆ϕ(ω) = − arctan(ω/ω0). For ω0 = 2π · 100 Hz (for a ADC sampling
frequency fs = 250 Hz) and a 10−3 drift of the Larmor frequencies, this causes a shift in
the weighted phase difference of −1.8 µrad. This is just below the the actual sensitivity
level of the comagnetometer of ≈ 10 µrad and should be avoided with regard to future
sensitivity improvements (see below).
4) The Larmor frequencies are typically ωHe ≈ 2π · 12 Hz and ωXe ≈ 2π · 5 Hz
(B0 ≈ 400 nT). In earlier measurements a sampling frequency of fs = 250 Hz has
proven to be a reasonable value to perform phase measurements on the precession sig-
nals, and to monitor noise sources like mechanical vibrations and power line radiation
(50 and 100 Hz) while avoiding unnecessary large data files. This sampling frequency
should be stable on the 10−6 level to monitor drifts of B0. The sampling of the different
channels should be simultaneous (and derived from the same clock, of course).
The following components have been chosen to build a DAQ system that meets the
requirements:
The ADC ADS1299 from Texas Instruments is a low-noise, 8 channel, simultaneous-
sampling, 24-bit, second-order delta-sigma converter with a built-in programmable gain
amplifier and internal reference voltage. This chip was originally developed for medical
instrumentation, especially ECG and EEG applications with some EEG-specific func-
tions. These EEG specific components can be powered down to use the chip in a DAQ
system. The input can be switched to balanced or unbalanced mode and the input
amplifier can be programmed to a gain between 1 and 24. The input range is 0...5 V for
gain=1 and unbalanced input. The sampling frequency can be selected fs = 2N ·250 Hz
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with N = 0...6 (via a variable digital decimation filter, see below for further informa-
tion on the delta-sigma ADC principle). For fs = 250 Hz and gain=1 the RMS-noise
is σ = 1.1 µV which corresponds to an average noise amplitude spectral density of
ρ = 0.1 µV/

√
Hz in the frequency range from DC to 125 Hz. The ADC is controlled

and read out via a SPI interface.
To shortly explain the principle and benefits of delta-sigma modulation: The analog
input signal is fed into the positive-input of a difference amplifier, integrated, and
then quantized by a comparator (1 bit ADC: 0 if the input voltage is smaller than
0 V; 1 otherwise). This value is latched with the modulation clock fMod (in this case
fMod = 1.024 MHz) and fed back into the negative-input of the difference amplifier. The
input signal is now encoded in a 1 bit stream with a frequency fMod. The advantage of
delta-sigma ADCs is that most of the conversion process is implemented in the digital
domain as the only analog components are the ones mentioned above. This results in a
high performance with respect to noise and linearity. The 1 bit stream has to be further
processed by digital filters. The digital decimation filter processes the 1 bit data stream
with the frequency fMod and turns it into a 24 bit stream with a frequency of fs. In this
case the filter is an adjustable third order low-pass sinc-filter with the scaled Z-domain
transfer function

|H(Z)| =

∣∣∣∣1− Z−Nd1− Z−1

∣∣∣∣3 (4.2)

and the corresponding frequency domain transfer function is

|H(f)| =

∣∣∣∣∣∣
sin
(
Ndπf
fMod

)
Nd · sin

(
πf
fMod

)
∣∣∣∣∣∣
3

(4.3)

with the selectable decimation ratio Nd (for a sampling frequency of fs = 250 Hz the
decimation ratio is 4096). The phase response is perfectly linear.
The input signal of the ADC is sampled with a frequency of fMod = 1.024 MHz that
is independent of the final output sampling frequency fs between 250 Hz and 16 kHz.
Thus, the analog anti-aliasing filter can be a simple RC low-pass filter with cut-off
frequency below fMod/2. In this case fRC = 7 kHz was chosen.
An external temperature-stabilized quartz oscillator gives a fOsc = 2.048 MHz clock
for the ADCs.
As the ADC input range is 0...+5 V and the SQUID system has an -10...+10 V output
range, AD8275 chips from Analog Devices were used as level shifter. These chips
have internal matched precision laser-trimmed resistors that ensure low gain error, low
temperature-dependent gain drift of less than 1 ppm/K, and a low voltage offset and
drift (2.5 µV/K). The output voltage noise amplitude spectral density is 0.3 µV/

√
Hz

at 10 Hz.
The ADC is controlled and read out by a micro-controller (Atmel XMEGA 32 A4) that
transmits the data to a measurement PC outside the shielded room via an optical serial
interface.
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4.2 Sensitivity Estimation

A permanent EDM d of a fundamental or composite particle must be aligned parallel
to the spin as mentioned before. Thus, for a magnetic guiding field aligned along the
z-direction, the Hamiltonian has the form H = −µ ·B0 − d ·Ez with the corresponding
frequency shift δωEDM = 2

h̄d · Ez. By varying the z-component of the electric field Ez,
the frequency shift is modulated correspondingly. Subsequently, a non-zero EDM would
manifest in a modulation of the weighted phase difference, and the corresponding value
d can be extracted.
To achieve maximum sensitivity, the electric field should be switched between the two
extrema ±Ez,0 , i.e. parallel and anti-parallel to the magnetic guiding field (in the case
of our EDM cell: Ez,0 = 10 kV

6 cm with the typical voltage of 10 kV between the electrodes
that are 6 cm apart).
The 3He and 129Xe Larmor frequencies are

ωHe = γHeB0

ωXe = γXeB0 +
2

h̄
Ez(t) · d (4.4)

with corresponding weighted frequency difference

∆ω(t) = ωHe −
γHe
γXe

ωXe = −γHe
γXe

2

h̄
Ez(t) · d . (4.5)

If Ez is constant, then the weighted phase difference is

∆ΦEDM(t) = −γHe
γXe

2

h̄
Ez · d · t . (4.6)

For an electric field, that is periodically switched between ±Ez,0 like in Fig. 4.10 (top)
(square wave with period Ta, i.e. the voltage is reversed after the time Ta/2), the
weighted phase difference is proportional to the triangular wave h(t, Ta) with period Ta
and amplitude 1 (see Fig. 4.10 (bottom)):

∆ΦEDM(t) = −γHe
γXe

2

h̄
Ez,0 · d · Ta · h(t, Ta) . (4.7)

Ta can be chosen freely for the measurement. It has a large influence on the sensitivity,
and thus, the optimal value has to be determined.
To do so, the data of a single run of the Lorentz invariance measurements (lasting about
24 hours, T ∗2,Xe = 8.5 h, combined data of four gradiometers) are analyzed as if a time
dependent electric field Ez(t) had been present during the measurement. The appro-
priate function that describes all deterministic phase shifts as before (chemical shift,
Earth’s rotation, Ramsey-Bloch-Siegert shift) and now contains the parameterization of
an EDM induced phase shift (g · h(t, Ta))

∆Φfit (t) = Φ0 + ∆ωlin · t+ EHe · e
−t

T∗
2,He + EXe · e

−t
T∗

2,Xe

+FXe · e
−2t
T∗

2,He + FHe · e
−2t
T∗

2,Xe + g · h(t, Ta) (4.8)
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Figure 4.10: An electric field that is periodically switched between ±Ez,0 with a period
Ta (i.e. the voltage is reversed after the time Ta/2) causes a signal in the
weighted phase difference that is proportional to a triangular wave for a
non-zero EDM (here Ta = 25000 s). The voltage can be switched in about
half a minute, which can be considered as instantaneous compared to Ta.
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with different switching periods Ta is fitted to the weighted phase difference data. Es-
timations for the fit parameter values Φ0, ∆ωlin, EHe/Xe, FHe/Xe and g including their
correlated and uncorrelated uncertainties are extracted. In the next step d can be cal-
culated from g:

d = −γXe
γHe

h̄

Ez,0 · Ta
· g . (4.9)

The corresponding uncorrelated and total (combination of uncorrelated and correlated)
uncertainties δd are determined for different switching periods Ta. Here Ez,0 = 10 kV

6 cm
was assumed. The results can be found in Fig. 4.11. As expected, the uncorrelated
uncertainty on d decreases with 1/Ta, because the uncorrelated uncertainty on g is
almost independent of Ta. For Ta < 10000 s the correlated uncertainty is negligible,
because the correlation between the triangular function h(t, Ta) describing the EDM
induced phase shift and the other terms describing deterministic phase shifts is very
small. In this regime, the total uncertainty is dominated by the uncorrelated uncertainty.
However, with larger Ta, the correlation increases (especially with the exponential terms
describing the Ramsey-Bloch-Siegert shift) resulting in correlated uncertainties that are
a factor of ≈ 20 higher than the uncorrelated one for Ta > 70000. This problem is
well known from the Lorentz invariance violation measurements where the modulation
has an unfavorable period of a sidereal day (86164 s). For the EDM measurements,
the period of the modulation can be chosen freely, and the optimum is found at Ta =
20000...30000 s (see Fig. 4.11), i.e. the voltage between the two electrodes should be
reversed every Ta/2 = 10000...15000 s. Then the correlated uncertainty is almost equal
to the uncorrelated uncertainty of δd = 1 · 10−28 ecm, resulting in a total uncertainty of
δd = 2·10−28 ecm. This is the achievable statistical sensitivity on the 129Xe EDM within
a single measurement run lasting one day assuming that the experimental conditions
are the same as for the Lorentz invariance violation measurements (e.g. SNR, T ∗2 ). For
shorter T ∗2,Xe, the optimal Ta will shift to smaller values. Thus, the optimal Ta should
be re-evaluated for the actual EDM measurement conditions.

4.3 Estimation of Systematic Effects

As this experiment is aiming at the 10−29 ecm sensitivity level (after about 100 days
of measurement time), much effort has to be put into the investigation of systematic
effects. In this section, possible systematic effects and measurement strategies to detect
or avoid them will be discussed.
Effects that have a time dependence similar to the EDM induced phase shift must be
excluded. Otherwise it would be possible that these effects mask the EDM leading
to a false negative result - or produce a false positive result by a fake signal. Special
care has to be taken to avoid (or minimize) effects that change sign as the electric field
is inverted. Such effects ("false EDM effects") would not be distinguishable from a
true EDM. In particular, high voltage correlated magnetic fields have to be considered.
There are two effects that are caused by the gradients of such fields: Firstly, due to
different centers of masses of 3He and 129Xe, comagnetometry becomes imperfect in the
presence of gradients ("gravitational shift", see page 56). Secondly, the magnetic field
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Figure 4.11: The data of a single Lorentz invariance measurement run lasting about
24 hours (T ∗2,Xe = 8.5 h, combined data of four gradiometers) were ana-
lyzed as if a electric field Ez(t) (periodically switched between parallel and
anti-parallel to the magnetic guiding field) had been present during the
measurement. The resulting uncorrelated (gray) and total uncertainties
(black) δd are determined for different switching periods Ta.
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gradients influence the transverse relaxation times T ∗2 . The resulting gradients are the
superposition of the gradients produced by the coils and the mu-metal shielding, and
the magnetic field gradients that are correlated with the high voltage. For example,
T ∗2 may be increased for one direction of the electric field and decreased for the other
direction. T ∗2 has a direct impact on the Ramsey-Bloch-Siegert shift, and therefore, this
might cause a false signal in the weighted phase difference.
Possible sources of high voltage correlated magnetic fields are leakage currents, the
displacement current during polarity reversal of the electric field, or motional magnetic
fields. These effects will be discussed in the following sections.

4.3.1 Leakage Currents

The electrodes of the EDM cell are 6 cm apart and separated partially by the glass wall,
the inner gas volume (mixture of He, Xe and SF6, total pressure about 50 mbar), and
the outer gas volume inside the conductive housing (SF6, 1 bar).
However, small leakage currents can flow on the surface of the glass wall or directly
through the gas volume (ionized gas atoms). The leakage current is monitored by the
pA-meters and is approximately 1 pA at a voltage of 1 kV (see Fig. 4.4).
If a leakage current I = 10 pA flows in a straight line between the electrodes on the
outside of the glass wall, then the maximum gradients will be about 7 · 10−16 T

cm (di-
rectly in the proximity of the current path). With the distance of the two centers of
mass ∆z = 0.31 µm (see Eq. (2.66) on p. 56) this would lead to a gravitational shift of
4 · 10−12 rad/s, which is negligible small. The influence on T ∗2 is also expected to be of
no further concern, as these gradients are much smaller than the gradients of the mu-
metal shielding and the coils (≈ 30 pT/cm). If the leakage current flows in a single loop
around the cell, then the maximum gradients will be on the same order of magnitude.
However, the influence of leakage currents can be experimentally tested by a controlled
current in the proximity of the measurement cell, e.g. with a wire made of conductive
plastic that connects the two electrodes at the surface of the glass wall. Then a current
of about 10 nA (three orders of magnitude higher than the actual leakage currents) is
send through the wire. Changes in the weighted phase difference and T ∗2 are measured.
Subsequently, the upper limits on false EDM effects for the smaller actual leakage cur-
rents (10 pA) can be determined. Furthermore, the performance of the comagnetometer
can be tested by varying the magnitude of the magnetic guiding field (e.g. B0 = 400 nT
for three hours, then B0 = 410 nT for three hours, ...) and looking for changes in T ∗2
(which will change with the gradients) and the weighted phase difference.

4.3.2 Magnetic Field During Polarity Reversal

The direction of the electric field has to be inverted several times during a single mea-
surement run (i.e. every few hours, see previous section). The corresponding magnetic
field, that is generated by the displacement current during polarity reversal, can be
calculated using Maxwell’s equations:

∇×B = µ0j + µ0ε0
∂E

∂t
. (4.10)
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A change in the high voltage creates a magnetic field which is equivalent to the field of
a constant current density between the two capacitor plates. The total current is

I = C · dU
dt

. (4.11)

The capacity is C ≈ 10−13 F, and if the voltage is slowly inverted within 200 s, then
the current is I = 10−13 F · 20 kV

200 s = 10 pA. The magnetic field strength of such a con-
figuration is |B(r)| = µ0I

2π ·
r
R2 for r < R and |B(r)| = µ0I

2π ·
1
r for r ≥ R, where R is

the radius of the cylindrical glass cell. With R = 5 cm and the values above this is
|B| = µ0I

2π ·
1
R = 2 · 10−17 T with gradients in the order of 4 · 10−18 T

cm . These gradients
are even lower than the gradients produced by the "concentrated" leakage current on
the surface of the glass wall.
Additionally, the noise of the high voltage source causes fluctuating displacement cur-
rents that produce magnetic noise. Assuming a RMS noise of 5 mV at 10 Hz the
fluctuating current is

I = C · dU
dt
≈ 10−13 F · 5 mV

0.1 s
= 5 · 10−15 A (4.12)

with immeasurably low corresponding magnetic noise.

4.3.3 Motional Magnetic Field

The hyper-polarized gas atoms are at room temperature T = 300 K and move randomly
around the EDM cell. The RMS speed is

vrms =

√
3RT

M
=

 1578 m/s for 3He

241 m/s for 129Xe
, (4.13)

where R = 8.3 J/(K mol) is the molar gas constant and M are the molar masses
(M = 3 g/mol for 3He and M = 129 g/mol for 129Xe).
A magnetic field Bm is observed in the rest frame of the gas atom when moving with
a velocity v relative to the source of an electric field E. For speeds v � c (i.e. the
relativistic factor γ ≈ 1), this motional magnetic field is:

Bm =
1

c2
·E × v .

For example, the motional magnetic field is Bm ≈ 3 nT for a particle that moves
with a speed of v = 1500 m/s (realistic velocity for a 3He atom in the measurement cell)
perpendicular to the electric field of magnitude E = 1.7 kV/cm. The motional magnetic
field and the static magnetic field B0, which is produced by the coils, contribute to the
effective magnetic field B, which is seen by the individual gas atoms:

B = B0 +Bm . (4.14)

The magnitude of the resulting field can be expressed by:

B = B0 + ΘEBBm +
1

2

B2
m

B0
, (Bm � B0)

= B0 +
ΘEB · v · E

c2
+
v2E2

2c4B0
, (4.15)
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where ΘEB is the angle between E and B0 in the plane perpendicular to v. Equa-
tion (4.15) has a term that is linear in v, and one that is quadratic in v. Both are
discussed in detail in Refs. [96–98] with a focus on the neutron EDM.
Concerning the linear effect: For storage experiments (like the 3He-129Xe comagne-
tometer), in principle, the average velocity is zero1. However, it must be tested, how well
this averaging works. Similar to gradients in the magnetic guiding field B0, randomly
fluctuating motional magnetic fields cause a faster depolarization and a tiny frequency
shift (see section "transverse relaxation" on p. 38). As the linear effect only occurs in
case of a misalignment between the electric and magnetic field (ΘEB 6= 0), one should
attempt to keep ΘEB as small as possible. However, it has to be pointed out, that
the requirements concerning alignment are much more stringent in the neutron EDM
experiments, as in that case the average velocity is non-zero. Especially for beam ex-
periments, this effect was the final systematic limitation, which will be demonstrated
here: The Oak Ridge apparatus, that had been moved to the ILL, used a neutron beam
with a velocity of 100 m/s and an electric field of roughly 100 kV/cm in their last ex-
periment (performed in the year 1977). The corresponding motional magnetic field was
in the order of 10 nT. To determine the neutron EDM with an uncertainty smaller than
1.5 ·10−24 ecm, the alignment should have been better than ΘEB = 10−5 rad [97], which
is certainly not an easy task. Therefore, storage experiments are much more favorable.
The influence of the linear effect in the 3He-129Xe comagnetometer experiment can
be tested by maximizing ΘEB. An electric field that is perpendicular to B0 must be
switched on and off periodically, and the corresponding change in the weighted phase
difference has to be monitored to extract the magnitude of such an false EDM effect.
Then upper limits on this systematic uncertainty for the "aligned case" (ΘEB < 2◦

should be easily reached) can be determined.
The determination of the xenon EDM using the 3He-129Xe comagnetometer with rel-
atively large partial pressures in the order of several mbar has an other systematic
advantage in comparison to the determination of the neutron EDM in storage exper-
iments: As neutron EDM experiments use very low neutron densities, particles might
get on a circular orbit in a cylindrical vessel, if collisions are dominated by wall interac-
tion (and not by particle-particle interactions). This would lead to a non-zero motional
magnetic field (linear effect). This is called the "geometric phase effect".
If one compares the strength of these systematic effects in neutron EDM experiments
and in this 129Xe EDM experiment, one finds, that in neutron EDM experiments one
must put much more effort into the alignment of the electric and magnetic field.
Concerning the quadratic effect: The quadratic term in Eq. (4.15) persists, even if
the average velocity of the particles in the measurement cell is zero. Furthermore, it is
independent of the alignment of electric and magnetic guiding field. To determine the
effects of this quadratic term, one must consider the stochastic movement of the gas par-
ticles in the measurement cell. The motional magnetic field has a definite direction and
magnitude for a time interval τc, which is the mean time between velocity changes due
collisions of a gas particle (with another particle or the wall). The parameter τc depends
on the density, the temperature, and the collision cross section of the gas in the mea-

1An exception could be a circular flow (e.g. caused by heat gradients) in an inhomogeneous electric
field.
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surement cell. For the gas atoms in the measurement cell (total pressure ≈ 35 mbar),
the mean free path is ≈ 2 µm and τc ≈ 1 ns. For a spin-1/2 system, the net effect of
the randomly fluctuating field can be quantitatively calculated using a density matrix
formalism, which was done by Lamoreaux and Golub [97]. The result can be expressed
as an 2x2 relaxation matrix, where the real components represent the spin relaxation,
while the imaginary components of the off-diagonal elements represent a frequency shift.
For γB0 · τc � 1, which is the case for the 3He-129Xe comagnetometer, the relaxation
rate is

r =
1

4
(γ
v

c2
E)2τc (4.16)

and the frequency shift is

δω =
(2π)3

9
(γ
v

c2
E)2γB0τ

2
c . (4.17)

As mentioned before, one must carefully look for frequency shifts that change sign if
one inverts the electric field. For the quadratic term, this is not the case, the shift is
independent of the direction of the electric field (the frequency shift is always positive).
However, a false EDM effect would arise if the magnitude of the electric field would not
be exactly the same after polarity reversal.
Here, the 3He-129Xe comagnetometer benefits from a short correlation time and a rel-
atively low electric field (E = 1.7 kV/cm). Typical values are r = 10−10 s−1 and
δω = 10−15 Hz, which can be neglected at the current sensitivity level. However, one
should perform systematic measurements, where one varies the magnitude of the electric
field and looks for effects on phase and relaxation.

4.4 Summary and Outlook

In this chapter, I have presented the technical developments and modifications of the
experimental set-up that have been implemented as a part of this thesis.
The sensitivity of the comagnetometer with respect to the EDM was estimated based on
the Lorentz invariance violation data. Under the premise that the same signal-to-noise
ratio and spin coherence times can be reached, the result is promising: After one day
of coherent spin precession, the uncertainty on the EDM is δd ≈ 2 · 10−28 ecm. This is
one order of magnitude better than the current best limit by M. A. Rosenberry and T.
E. Chupp [73, 74].
As this experiment is aiming at the 10−29 ecm sensitivity level (which can be reached
after about 100 days of measurement time), much effort has to be put into the investi-
gation of systematic effects. It must be excluded that systematic effects mask the EDM
leading to a false negative result - or produce a false positive result by a fake signal.
Special care must be taken to avoid (or minimize) effects that change sign as the electric
field is inverted. Such effects ("false EDM effects") would not be distinguishable from
a true EDM. In particular, high voltage correlated magnetic fields have to be consid-
ered. There are two effects that are caused by the gradients of such fields: Firstly, due
to different centers of masses of 3He and 129Xe, comagnetometry becomes imperfect in
the presence of gradients (gravitational shift). Secondly, the magnetic field gradients
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influence the transverse relaxation times T ∗2 . T ∗2 has a direct impact on the Ramsey-
Bloch-Siegert shift, and therefore, this might cause a false signal in the weighted phase
difference. Possible sources of high voltage correlated magnetic fields are leakage cur-
rents, the displacement current during polarity reversal of the electric field, or motional
magnetic fields.
The next steps to actual 129Xe EDM measurements include tests of the magnetically
shielded room in Jülich and the whole set-up with respect to both magnetic noise and
gradients, as these values have a large influence on the attainable statistical uncer-
tainty. Furthermore, the effect of the applied high voltage on relaxation rates and
frequency shifts must be tested extensively. Then, a sensitivity of δd ≈ 10−28 ecm can
be reached with first measurement runs. Finally, a measurement period of about 100
days follows, which is long enough to accumulate data for a statistical uncertainty on
the δd ≈ 10−29 ecm level.
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5 Conclusion and Outlook

To summarize the preceding chapters, and to point out the benefit of high-precision
experiments at low energies once again:
It is widely believed that the Standard Model (SM) together with General Relativity
(GR) is a low-energy manifestation of a more complete theory, that perhaps unifies
the four fundamental interactions, or at least describes gravity at the quantum level.
Many extensions to the SM have been proposed, and these give predictions for physical
phenomena that differ from those of the SM. Some searches for new physics beyond the
standard model are performed at high-energy particle colliders. There the new processes
or particles would be seen directly if the energy would be sufficient to produce them.
However, the effects (e.g. of a theory of quantum gravity) would become apparent at
high energy scales (e.g. the Planck scale mP ≈ 1019 GeV) that is by far out of reach for
particle colliders.
As an alternative, a very sensitive probe can be constructed at low energies through
precision measurements of quantities, that can be described by the SM. Then physics
beyond the standard model would become apparent indirectly through a deviation of
the measured values from the SM predictions. The precision measurements, that are
the topic of this dissertation, are of this kind:

Firstly, a small amount of the large effects of quantum gravity at the Planck scale
should remain at low energies. This can be tested by looking for a violation of Lorentz
invariance in the neutron sector. As a central part of this dissertation, the experiments
and methods of data evaluation have been described that put a limit on a Lorentz in-
variance and CPT violating coupling of the (bound) neutron spin σn to a hypothetical
background field b̃n. Such a coupling of the form

V = −b̃n · σn (5.1)

is motivated within the minimal Standard Model Extension. The experimental result
was found to be compatible with zero:

b̃nX = (5.1± 4.9) · 10−34 GeV
b̃nY = (3.6± 7.8) · 10−34 GeV . (5.2)

The corresponding upper limits on the equatorial component are

b̃n⊥ < 8.4 · 10−34 GeV (68% Confidence Level)
b̃n⊥ < 1.6 · 10−33 GeV (95% Confidence Level) . (5.3)

This is an improvement by a factor of 50 compared to the year 2009 measurements with
the 3He-129Xe comagnetometer [37] and an improvement by a factor of 4 compared to
the former best limit measured by a 21Ne-Rb-K comagnetometer [13].
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Furthermore, the data can be used to extract the corresponding limits on proton inter-
actions: b̃p⊥ < 1.6 · 10−33 GeV.
In addition, measurements using a slowly rotating magnetic guiding field have been
described. Though the results of these measurements did not flow into the final limits
on Lorentz invariance violation, a lot of knowledge about the behavior of the comagne-
tometer, the mu-metal shielding, and the measurement system etc. could be derived.
Finally, this led to an optimization procedure with respect to gradient relaxation that
will be also applied in future measurements. Spin coherence could be maintained for a
very long time with T ∗2,Xe ≈ 8.5 h and T ∗2,He ≈ 100 h.

Secondly, new sources of CP violation would cause permanent EDMs of particles that
are many orders of magnitude larger than the EDMs predicted by the SM. Therefore, ex-
periments that put limits on EDMs can rule out (or at least narrow down) such models;
or if they detect one, will have an unambiguous evidence of new physics. Historically,
the stringent limit on the neutron EDM has ruled out more speculative models than any
other single experimental approach in particle physics. EDM precision measurements in
various systems with different sensitivities will continue to constrain proposed models
of physics beyond the standard model. The various searches for CP violation are a good
example of how low- and high-energy experiments are complementary to each other.
Several technical developments and modifications of the experimental set-up were im-
plemented as a part of this thesis. The sensitivity of the comagnetometer with respect
to the EDM was estimated based on the Lorentz invariance violation data. Under the
premise that the same signal-to-noise ratio and spin coherence times can be reached,
the result is promising: After one day of coherent spin precession, the uncertainty on
the EDM is δd ≈ 2 · 10−28 ecm, which would be one order of magnitude better than the
current best limit. In the long run, this experiment is aiming at the 10−29 ecm sensitiv-
ity level (which can be reached after about 100 days of measurement time). Therefore,
much effort has to be put into the investigation of systematic effects. Special care must
be taken to avoid (or minimize) effects that change sign as the electric field is inverted,
as such false EDM effects would not be distinguishable from a true EDM. In particular
high voltage correlated magnetic fields have to be considered.
To give an outlook: The next steps to actual 129Xe EDM measurements include tests of
the magnetically shielded room in Jülich and the whole set-up with respect to both mag-
netic noise and gradients, as these values have a large influence on the attainable statis-
tical uncertainty. Furthermore, the effect of the applied high voltage on relaxation rates
and frequency shifts must be tested extensively. Then, a sensitivity of δd ≈ 10−28 ecm
can be reached with first measurement runs. Finally, a measurement period of about
100 days follows, which is long enough to accumulate data for a statistical uncertainty
on the δd ≈ 10−29 ecm level.
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A Calculations concerning the Lorentz invariance
violation measurements

A.1 Calculation of the phase and amplitude relations of the
SME parameters with respect to different
measurement directions

The measurements that are described in Chapter 3 (putting limits on Lorentz invariance
violation) have been performed under two different measurement directions (for runs 1
to 3 the magnetic guiding field pointed roughly to the south-south-west ρ1 = 208◦, and
for runs 4 to 7 to east-north-east ρ2 = 73◦). The phase and amplitude relations for
different measurement directions will be derived in the following paragraph:
A coordinate system (X̂, Ŷ , Ẑ) is defined with Ẑ being parallel to Earth’s rotation axis.
This coordinate system is fixed with respect to distant stars if one neglects the Earth’s
precession movement. The X̂ axis is determined by the vernal equinox (equatorial co-
ordinate system).
In the lab system one describes the direction of the spins (or the direction of the mag-
netic guiding field) with: horizontal direction, latitude Θ and geographic direction ρ.
Projection of the spin direction at the time t = 0, when the laboratory lies in the X̂-Ẑ
plane, on to the coordinate axes (X̂, Ŷ , Ẑ) results in:


x

y

z


t0

=


sin(Θ) · cos(ρ)

sin(ρ)

cos(Θ) · cos(ρ)

 (A.1)

At an arbitrary time with Earth rotation (rotation frequency is the sidereal frequency
Ωs):

~r(t) =


cos(Ωst) sin(Ωst) 0

− sin(Ωst) cos(Ωst) 0

0 0 1




sin(Θ) · cos(ρ)

sin(ρ)

cos(Θ) · cos(ρ)



=


sin(ρ) · sin(Ωst) + sin(Θ) · cos(ρ) · cos(Ωst)

sin(ρ) · cos(Ωst)− sin(Θ) · cos(ρ) · sin(Ωst)

cos(Θ) · cos(ρ)

 (A.2)
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The frequency shift due to an Lorentz invariance violating background field is:

ΩLV (t) =

〈
b̃
〉
h̄
ε̂ · ~σ (A.3)

=

〈
b̃
〉
h̄


εx

εy

εz

 · ~r(t)

=

〈
b̃
〉
h̄
· [εx · (sin(ρ) · sin(Ωst) + sin(Θ) · cos(ρ) · cos(Ωst))

+ εy · (sin(ρ) · cos(Ωst)− sin(Θ) · cos(ρ) · sin(Ωst))

+ εz · cos(Θ) · cos(ρ)] (A.4)

=:

〈
b̃
〉
h̄
· [(c′11εx + c′22εy) cos(Ωst) + (c′12εx + c′21εy) sin(Ωst) + const1]

(A.5)

To get the phase one integrates over time:

ΦLV (t) =

∫ t

t0

ΩLV (t′)dt′ (A.6)

= const2 + lin · t+

〈
b̃
〉

h̄Ωs
[(c′11εx + c′22εy) sin(Ωst)− (c′12εx + c′21εy) cos(Ωst)]

(A.7)

The constant and linear terms can not be measured in our experiment, and therefor
they are neglected in the following equations.
Thus:

ΦLV (t) =

〈
b̃
〉

h̄Ωs
[− sin(ρ)εx cos(Ωst) + cos(ρ) sin(Θ)εx sin(Ωst)

+ sin(ρ)εy sin(Ωst) + cos(ρ) sin(Θ)εy cos(Ωst)] (A.8)

This is equivalent to:

ΦLV (t) =

〈
b̃
〉

h̄Ωs
[A · εx · sin(Ωst+ ϕ) +A · εy · cos(Ωst+ ϕ)] (A.9)

with

A =

√
sin2 ρ+ sin2 Θ · cos2 α

ϕ = arctan[− tan ρ/ sin Θ] . (A.10)

In our case with Θ = 52.52◦, ρ1 = 208◦, ρ2 = 73◦ this results in A1 = 0.84, A2 = 0.98,
ϕ1 = −0.55 and ϕ2 = −1.33.
If one now chooses t = 0 with a sidereal phase ϕSD 6= 0, this phase has to be added:
ϕ1,2 → ϕ1,2 + ϕSD. In our case with ϕSD = 0.104 · 2π: ϕ1 = 0.103 and ϕ2 = −0.677.
Comment: A is called sinχ in the [53].
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A.2 Using the data of several gradiometers

A.2 Using the data of several gradiometers

The data of several gradiometers or magnetometers can only be combined if they can
be considered as independent measurements. In other words: the intrinsic SQUID noise
must dominate over external noise in order to combine the gradiometers or magnetome-
ters. Therefore one has to look for correlation in the noise of the measured SQUID
signals. Correlated noise in the SQUID signals may be produced for example by a noisy
current source that causes a noise in the magnetic guiding field that is seen by all gra-
diometers. On the other hand, the intrinsic SQUID noise is uncorrelated.
In the following figures a small set of data is shown. The data have been split into
smaller sub-sets with 800 data points (3.2s) each. Then a fit to the data of each sub-set
has been performed with the fit function

a0 + a1 · t+ b1 · cos(ωHet) + b2 · sin(ωHet) + c1 · cos(ωXet) + c2 · sin(ωXet) .(A.11)

Then this fitted function was subtracted from the data points (calculation of residuals).
Thus, only the noise remained. The noise data of two gradiometers or magnetometers
are now available in time series

x(i ·∆t) and y(i ·∆t) with i = 1...N and ∆t =
1

fsampling
= 4 ms . (A.12)

The following tests have been performed:

• Scatter plots: One forms a set of points of the form (x(i·∆t)
σx

, y(i·∆t)
σy

). These points
are plotted. One would expect that all points lie on a straight line if the data are
perfectly linearly correlated. Complex (non-linear) correlation should manifest
in the formation of patterns. On page 130 one can find the scatter plots for all
combinations of the gradiometers Z2K-Z7K, Z2E-Z7E, Z3F-Z7F and Z1E+Z9E,
which are used for the evaluation of the Lorentz invariance violation data (800
points each). Apparently there is no pattern.
On page 132 (left) one can find the scatter plot for the combination of the single
magnetometers Z2K and Z7K. One can clearly see a small correlation.

• Cross- and auto-correlation: One calculates the sums:
ρ̄(τ) = 1

Nσxσy

∑N
i=1 x(i ·∆t) · y(i ·∆t+ τ)

These values are plotted as a function of τ for all combinations of the gradiometers
Z2K-Z7K, Z2E-Z7E, Z3F-Z7F and Z1E+Z9E on page 131. As one would expect,
the auto-correlation (on the diagonals) is 1 for τ = 0 and then drops to zero
(sinc(x) behavior of the auto-correlation function, because the noise is band lim-
ited). The cross-correlation (different gradiometers) fluctuates around zero. For
the individual magnetometers the situation is different (see page 132 right). The
cross-correlation is about 0.3 for τ = 0.

Result of the analysis: The noise of the gradiometers is not correlated. Therefore the
data of different gradiometers can be combined.
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A.3 Calculation of the upper limits on b̃n⊥

A.3 Calculation of the upper limits on b̃n⊥

As the Earth’s rotation is used to modulate a posited frequency shift in the Larmor
frequencies due to the coupling of the spins to a hypothetical background field b̃n,
only the components perpendicular to the Earth axis can be measured. These two
components b̃nx and b̃ny can directly be extracted from the fit result. However, if the
result is consistent with a zero background field, it is useful to determine upper limits on
the magnitude b̃n⊥ of such a field, while the direction stays unspecified. In the following
paragraphs, a consistent and statistically sound method will be presented how such an
upper limit should be calculated.

A.3.1 Test for zero effect

The null hypothesis is: There is no background field,〈b̃nx
b̃ny

〉 =

0

0

 . (A.13)

The measurement of the components of the background field has an uncertainty σ. To
simplify the argument we can assume that the measurement sensitivity is isotropic. This
is not exactly the case due to slightly different measurement times and thus different
statistics for the x and y components. But the principle stays the same, with the
difference that the following integrals will have to be solved numerically.
The probability density function (pdf) to measure a specific pair (bx, by) is given by:

f(bx, by) =
1

2πσ2
· exp(− 1

2σ2
(b2x + b2y)) (A.14)

Transformation to polar coordinates and integration over ϕ gives the pdf to measure a
specific value b⊥ =

√
b2x + b2y:

g(b⊥) =
b⊥
σ2
· exp(− b⊥

2σ2
) (A.15)

The expectation value of this pdf is < b⊥ >=
√

π
2σ and the standard deviation is

σ⊥ =
√

2− π
2σ ≈ 0.66σ.

One has to reject the null hypothesis if the measured value b⊥ is larger than b0⊥, which
is a solution of the following equation:∫ b0⊥

0
g(b⊥)db⊥

!
= 95% (A.16)

For our measurements with σ ≈ 5 · 10−34 GeV one finds b0⊥ ≈ 12 · 10−34 GeV.
The measured values are b⊥ =

√
b2x + b2y = 5 · 10−34 GeV. Thus there is no reason to

reject the null hypothesis.
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A Calculations concerning the Lorentz invariance violation measurements

A.3.2 First method

The probability density function for a certain result if one repeats the measurement in
our case is given by the two-dimensional normal distribution

N(x, y;x0, σx, y0, σy, ρ) (A.17)

with the expectation value (x0, y0) = (b̃nx, b̃
n
y), the standard deviations σx and σy and

the correlation (between x and y) ρ. The integration of this pdf over a circle with center
(0, 0) and radius R gives the probability p, that a repeated measurement would result

in b̃n⊥ =
√

(b̃nx)2 + (b̃ny)2 < R.

p =

∫
circle

d2~r N(x, y;x0, σx, y0, σy, ρ)

=

∫ R

−R
dx

∫ √R2−x2

−
√
R2−x2

dy
1

2πσxσy
√

1− ρ2

· exp

[
− 1

2(1− ρ2)

((
x− x0

σx

)2

− 2ρ

(
x− x0

σx

)(
y − y0

σy

)
+

(
y − y0

σy

)2
)]
(A.18)

The integral is solved numerically and one chooses R in a way, so that p = 68% resp.
p = 95%.
This method was probably used by [12].

A.3.3 Second method

The first method is too conservative in some points: If the expectation value of the hy-

pothetical background field is indeed

〈b̃nx
b̃ny

〉 =

0

0

 (this is: there is no background

field), the direction of the field is not defined. And if the result of the measurement is
consistent with zero, one can give no statement about the direction of the background
field. However, in the probability density function that is used for the first method the
direction bears a meaning.
In the following paragraph it will be shown that one can derive even tighter limits on the
magnitude b̃n⊥ of a posited Lorentz invariance violating background field if the direction
of such a field stays undetermined.
Let µt be the true (but unknown) value of the magnitude b̃n⊥ and let x0 be the experimen-
tally determined value. In our case this is x0 =

√
4.12 + 2.92 ·10−34GeV = 5 ·10−34GeV.

Then, let L(x|µt) be the probability density function to measure a specific value x
as a function of the "true" value µt. L(x|µt) can be calculated by taking the two-
dimensional normal distribution (b̃nx, b̃

n
y), transforming to polar coordinates (x, φ) and

integration over φ (the direction has no meaning). For µt = 0 and σx = σy this can be
solved numerically. In other cases one has to solve this numerically. The result is shown
in Fig. A.4 for an energy resolution of σ = 5.5 · 10−34GeV.
A cut through the x-L-plane with µt = 0 is shown in Fig. A.5 (top). This is exactly
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described by Eq. (A.15). For larger µt this distribution approaches the normal distri-
bution (see Fig. A.5 (bottom) ).
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Figure A.4: L(x|µt) is the probability density function to measure a specific value x as
a function of the "true" value µt.
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Figure A.5: L(x|µt) with the fixed values µt = 0 und µt = 25 · 10−34GeV.

Let P (µt|x0) be the distribution that describes the probability density of the true value
µt as a function of the measured value x0. Taking Bayes’ Theorem one can calculate
P (µt|x0) from L(x|µt):

P (µt|x0) = L(x|µt) ·
P1(µt)

P2(x0)
(A.19)

Here P1(µt) is the a-priory-probability density function of µt. In our case we know
nothing about this true value µt (except that it is the magnitude of a field and therby
positive). Thus one assumes that P1(µt) is equally distributed in the in the interval
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[0;∞[. P2(x0) is the a-priory probability density function to measure a specific value
x0. The ratio Norm= P1(µt)

P2(x0) is consequently a normalization factor that depends on x0

and can be calculated using

1
!

=

∫ ∞
0

Norm · L(x0|µt)dµt . (A.20)

The distribution P (µt|x0) is a cut through the L-µr-plane of L(x|µt) with a constant
x = x0 (including the normalization factor). In Fig. A.6 such a cut including the
normalization for x0 = 5 · 10−34GeV is shown.
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Figure A.6: P (µt|x0) is the distribution that describes the probability density of the
true value µt as a function of the measured value x0 = 5 · 10−34GeV.

The confidence intervals or upper limits G for the magnitude of the background field
can be derived by integrating P (µt|x0) (with experimental result x0 = 5 · 10−34GeV):

∫ G

0
p(µt|x0)dµt =

∫ G

0
Norm · L(x0|µt)dµt

!
= 1− α =

68%

95%
(A.21)

This results in G = 6.7 · 10−34GeV (68%) resp. G = 13 · 10−34GeV (95%) and can be
interpreted as:

b̃n⊥ < 6.7 · 10−34 GeV, 68% Confidence Level

b̃n⊥ < 1.3 · 10−33 GeV, 95% Confidence Level (A.22)
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A.3.4 Remarks

• For large experimentally determined values (x0 � σ), P (µt|x0) transforms into
the normal distribution (see Fig. A.7). This limit can be easily calculated in
classical statistics ("Frequentist Approach") and as expected one gets the same
result.

• This second method (using Bayes’ Theorem) can be used without any changes if
one can not easily answer the question if the measurement result is compatible
with zero.

• This method allows to combine the results of different experiments to put even
tighter limits on b̃n⊥, e. g. by adjusting the a-priory-probability density function
P1(µt).
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Figure A.7: P (µt|x0) is the distribution that describes the probability density of the true
value µt as a function of a hypothetically measured value x0 = 25·10−34GeV
that is by far larger than the energy resolution of the experiment.
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A.4 Details on the the current sources

Figure A.8: Schematic of the high-precision low-noise dual current source (single out-
put stage). The current source is controlled from the outside via an optical
link and it is powered by LiPo cells. A micro-controller is used for the
communication via the optical link and to control the digital-to-analog con-
verters (DACs). The output voltage of the 20-bit DAC AD5791 is filtered
(low-pass filter of C80 and R81) and buffered by an AD8675 low-noise opera-
tional amplifier. Then the output current is driven by an AD797 operational
amplifier. Finally, the current through the load resistance causes a voltage
drop over the sense resistors (R7...R11) that is coupled back into a feed-back
mechanism. (R94 is only needed if there is no external load attached.)
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B Influence of the SQUID position on the
measured amplitude and phase

A uniformly magnetized sphere of radius R0 and magnetizationM produces a homoge-
neous magnetic field Bin = 2µ0

3 M inside the sphere. The field outside the sphere is the

field of a dipole p =
4πR3

0
3 M at the center of the sphere. This result can be found in [50],

for example. Thus, the external field of a spherical sample cell filled with precessing
spins can be described by a rotating dipole p(t) at the center of the cell, e. g.

p(t) = p0 · (sin(ωt), 0, cos(ωt)) (B.1)

for a magnetic guiding field pointing into the y-direction.
The field of a dipole in the origin is

B(r) =
µ0

4π

(
3
p · r
r5
r − p

r3

)
(B.2)

with r = |r|. Thus, a point-like central SQUID at the position r = (0, 0, R) mea-
suring the z-component of the magnetic field would give a signal proportional to

Bz =
µ0

4π

(
3
pz ·R2

R5
− pz
r3

)
=

µ0

2π

p0

R3
cos(ωt) . (B.3)

More general, the signal of a point-like SQUID measuring the z-component of the mag-
netic field at the position r = (x, y, z) with R =

√
x2 + y2 + z2 is proportional to

Bz =
µ0

4π

(
3
px · x+ pz · z

R5
· z − pz

r3

)
=

µ0

4π
p0

[
3xz

R5
sin(ωt) +

(
3z2

R5
− 1

R3

)
cos(ωt)

]
, (B.4)

i. e. a signal proportional to cos(ωt + ϕpos) with a phase that depends on the SQUID
position

ϕpos = arctan

(
3xz

3z2 −R2

)
. (B.5)

In the case
√
x2 + y2 � z this can be approximated by ϕpos ≈ 3x

2R .
To investigate the influence of the spatial extent on the measured amplitude: The
SQUID has a spatial extent measuring the flux through a certain area A. In this case
the area is a circle with radius ρ. Then for a central SQUID at the position r = (0, 0, R)
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Figure B.1: The measured signal amplitude as a function of the pick-up loop radius ρ
for R = 10 cm.

measuring the z-component of the magnetic field would give a signal proportional to

Φ(t) =

∫
A
B(t)dA =

∫
A
Bz(t)dA

=

∫ ρ

−ρ
dx

∫ √ρ2−x2

−
√
ρ2−x2

dyBz(t, x, y, z = R)

=

∫ ρ

−ρ
dx

∫ √ρ2−x2

−
√
ρ2−x2

dy
µ0

4π

[
3

p · (x, y,R)

(R2 + x2 + y2)5/2
·R− pz

(R2 + x2 + y2)3/2

]
· cos(ωt)

=
µ0

2
p0

ρ2

(R2 + ρ2)3/2
(B.6)

Thus, if ρ� R the measured signal amplitude increases linearly with the sensitive area
of the SQUID (e.g. the area enclosed by the pick-up loop). Laborbuch Seite 62 bis 66
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C.1 List of Figures

1.1 Illustration of the coupling V = −b̃wJ · σwJ . The hypothetical background
field b̃wJ is fixed with respect to distant stars, whereas the spins rotate
with the Earth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2 A drawing of the spin pendulum as it was used by the Eöt-Wash group.
The light green and darker blue parts are made of Alnico and SmCo5,
respectively. Upper left: Top view of a single puck; the effective spin
polarization points to the right. Lower right: The assembled pendulum
with the magnetic shield shown cut away to reveal the four pucks inside.
Two of the four mirrors (light gold), that are used to monitor the pen-
dulum twist, are prominent. Arrows with filled heads show the relative
densities and directions of the electron spins, open-headed arrows show
the directions of the magnetic field. Source: [22]. . . . . . . . . . . . . . 15

1.3 A permanent electric dipole moment of a particle violates both P and
T symmetries and thus violates CP symmetry (assuming CPT conser-
vation). Under parity transformation P, the electric dipole moment d
changes sign, whereas the spin I stays unchanged. Under time reversal
T, d stays unchanged, but I changes sign. . . . . . . . . . . . . . . . . . 18

1.4 The various theories like SUSY, Left-Right Symmetry, Technicolor, Multi-
Higgs that incorporate new sources of CP violation should give direct
predictions concerning the value of EDMs of the fundamental particles,
especially the electron EDM de, the quark EDMs as well as possible CP-
violating quark-lepton interactions and "ChromoEDMs" (stemming from
the quark-quark interaction). Then extensive QCD calculation is needed
to get to the resulting nucleon EDMs (neutron EDM dn) and CP-violating
nucleon-nucleon interactions. Afterwards nuclear models have to be ap-
plied to calculate the resulting nuclear EDM. Finally, the atomic EDM
can be determined using atomic theory incorporating the nuclear EDM,
the electron EDM and CP-violating quark-lepton forces. For other par-
ticles like the TlF molecule or the neutron much less model dependent
assumptions are needed. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.5 Sketch of the experimental set-up to measure the neutron EDM taken
from the original publication by J. Smith, E. Purcell and N. Ramsey [68].
A: magnetized iron mirror polarizer, B: the pole faces of the homogeneous
field magnet, C and C’: rf-coils, A’: analyzer and D: detector. . . . . . . 22

1.6 Sketch of the experimental set-up to measure the 199Hg EDM taken from
the publication by W. C. Griffith [70]. . . . . . . . . . . . . . . . . . . . 24
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1.7 Sketch of the experimental set-up to measure the 129Xe EDM using a
He-Xe dual maser taken from the publication by M. A. Rosenberry [73].
Inset: The magnetization vectorM has a fixed magnitude and projection
along the z axis, i.e., steady state oscillation is sustained above threshold
due to the equilibrium of three torques: spin diffusion from the pump
cell, coherence relaxation, and radiation damping, which depends on M . 25

1.8 Overview of fundamental problems (Unification of the SM and GR, the
strong CP problem, the nature of dark matter, and the origin of the
baryon asymmetry) and the connections to measurements with the 3He-
129Xe comagnetometer (Lorentz Invariance Violation (LIV), 129Xe-EDM,
and the search for a force mediated by Axions). . . . . . . . . . . . . . . 27

2.1 Schematic view of the energy levels of a spin 1
2 particle in a magnetic field.

For 3He and 129Xe and for a magnetic field of about 1 µT the Zeeman
splitting is in the range of ∆E = γh̄B0 ≈ 10−22 GeV. The corresponding
transition or precession frequency is about 10 Hz. The current sensitivity
to additional shifts of the energy levels of the comagnetometer is 10−34

GeV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Metastability exchange optical pumping of 3He. Source: [39] . . . . . . . 34

2.3 Left: A schematic top view of the Berlin Magnetically Shielded Room
(BMSR-2) that is housed in a dedicated building at the Physikalisch-
Technische Bundesanstalt. It is so far the best shielded room worldwide
with shielding factors of 106 at 1 Hz and 109 at 10 Hz [90]. Right: View
through the several doors leading through the mu-metal layers into the
inner chamber with the prominent white cryostat housing the SQUID
sensors and the Helmholtz coil pairs (green). . . . . . . . . . . . . . . . . 40

2.4 Block diagram of the high-precision low-noise dual current source. The
current source is controlled from the outside via an optical link and it is
powered by LiPo cells. A micro-controller is used for the communication
via the optical link and to control the digital-to-analog converters (DACs). 41

2.5 The principle of the DC SQUID with a constant bias current. The voltage
drop depends periodically on the flux Φ that is enclosed by the supercon-
ducting loop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
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2.6 The basic principle of a Flux-Locked Loop (FLL) with an external pickup
coil. The niob capsule and the components inside, as well as the niob
wire forming the gradiometer loops on the left side, are at liquid helium
temperature. The other components (amplifier, integrator, and the whole
DAQ system is at room temperature. Changes in the external field cause a
current in the pickup loop which generates a magnetic field at the SQUID
position via the input coil. A deviation from the working point of the
SQUID voltage is amplified, integrated and then a current is fed back
into the coil via a feedback resistor Rf. The resulting change in the flux
of the feedback loop also sets the current in the input coil and pickup
loop back to zero. The voltage drop across the feedback resistor Rf is
proportional to the flux difference of the lower and higher pickup loop.
To form a magnetometer, one can use a single loop pickup coil (instead
of the two pickup loops for gradiometers). When the SQUIDs are used
as direct magnetic flux sensors (measuring the flux at the position of the
SQUID) the niob capsule and the coils on the left side are removed. . . . 44

2.7 The typical spectrum (amplitude spectral density) of the measurement
signal detected by a single SQUID magnetometer. The peaks at the
129Xe (5 Hz) and 3He (13 Hz) Larmor frequencies are prominent. The
white noise level is about 3 fT/

√
Hz for frequencies above 1 Hz. For

lower frequencies the 1/f noise (flicker noise) is dominant. For frequencies
above 100 Hz the anti-aliasing low pass filter roll-off can be seen (sampling
frequency 250 Hz). The broader peaks around 10 Hz and 15 Hz are caused
by mechanical vibrations of the building. . . . . . . . . . . . . . . . . . . 46

2.8 The Ramsey-Bloch-Siegert shift δωRBS as a function of the difference be-
tween the driving frequency ωD and the Larmor frequency of the undis-
turbed system ωL for different amplitudes of the driving field γ · B1 =
0.05 Hz (black) and 0.02 Hz (dashed). At ωD−ωL ≈ 0 the absolute value
of the Ramsey-Bloch-Siegert shift |δωRBS| reaches the maximum γB1.
The shift averages out to zero for small fluctuations around ωD − ωL ≈ 0. 53

2.9 Illustration of the self-shift in an inhomogeneous magnetic field (a) for
the symmetric case with two separate spherical volumes, (b) for a single
spherical cell with two volumes with different Larmor frequencies. For a
detailed description see text. . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.1 The spherical sample cell with a radius R = 5 cm attached to the filling
station on the right side. . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2 A single magnetometer raw signal with the prominent beating of the 3He
and 129Xe precession signal at the Larmor frequencies ≈ 13 Hz and 5 Hz
(this corresponds to B0 = 400 nT). . . . . . . . . . . . . . . . . . . . . . 62
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3.3 The spectrum (amplitude spectral density) of a single magnetometer
(top) and a gradiometer (bottom). The gradiometer signal was calcu-
lated using the signal of a magnetometer next to the sample cell and
subtracting the signal of a magnetometer that is 70 mm above ("software
gradiometer"). The prominent sharp peaks at around 5 Hz and 13 Hz
correspond to the precession frequencies of 3He and 129Xe. The single
magnetometer spectrum shows large and broad structures around 10 Hz
and 15 Hz stemming from mechanical vibrations, and narrow peaks at
50 Hz and 100 Hz (irradiation from power lines). These undesired signals
are extremely reduced in the gradiometer signal. For frequencies above
100 Hz the anti-aliasing low pass filter roll-off can be seen (sampling fre-
quency 250 Hz). The white noise level of the gradiometer is increased by
a factor

√
2 compared to the single magnetometer due to the addition of

uncorrelated noise of two SQUIDs. . . . . . . . . . . . . . . . . . . . . . 63

3.4 Residuals of the magnetometer data (top) and gradiometer data (bottom)
after subtraction of the fitted function in Eq. (3.2) from the measured
data for a single sub-cut. There is a clear structure in the magnetometer
residuals stemming from vibrations. The residuals of the gradiometer
seem to be Gaussian distributed. . . . . . . . . . . . . . . . . . . . . . . 65

3.5 The observed χ2/d.o.f.-distribution of the sub-cut data fits with N =
27695 with mean µ′ = 1.012 and standard deviation σ′ = 0.073. For
d.o.f. = 792 the expected χ2/d.o.f. distribution has a Gaussian shape
with a mean value µ = 1 and a standard deviation σ = 0.050 . . . . . . . 66

3.6 The measured signal amplitudes (left) and Larmor frequencies ω (right)
of 3He (top) and 129Xe (bottom) as a function of time (for a single mea-
surement run lasting about one day). Here the current through the coils
was kept constant after the initial non-adiabatic switching (spin flip). . 67

3.7 The accumulated phases Φ(i) at t(i) are determined by adding the appro-
priate multiples of 2π to ϕ(i). . . . . . . . . . . . . . . . . . . . . . . . . 69

3.8 Summary of the data evaluation procedure from the SQUID raw data to
the weighted phase difference ∆Φ and other important intermediate data
like signal amplitudes and relaxation time constants. . . . . . . . . . . . 70

3.9 After the π/2-flip (non-adiabatic spin flip) the currents through the coils
have a sinusoidal time-dependence resulting in a slow (adiabatic) rotation
of the direction of the magnetic guiding field. . . . . . . . . . . . . . . . 71

3.10 The 3He Larmor frequency for a step-by-step rotating magnetic guiding
field. The Larmor frequency changes faster while the magnetic guiding
field rotates (almost vertical lines) and drifts slowly while the current
through the coils is kept constant. . . . . . . . . . . . . . . . . . . . . . . 72

3.11 The measured 3He signal amplitude for a step-by-step rotating magnetic
guiding field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
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3.12 The transverse relaxation time of helium as a function of the direction α
of the magnetic guiding field in the horizontal plane, measured in steps
of ∆α = 45◦ for 5 turns. In total, the measurement took about 20 hours
with ∼30 min for each field setting to extract the T ∗2 from the decay of
the signal amplitude. Solid line: Fit of a Fourier series to the relaxation
rates 1/T ∗2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.13 Illustration of geometric effects concerning the measured amplitudes (sub-
sumed in S(α)) and phases. Top-view onto the spherical sample cell with
three off-centered SQUIDs with positions rS 6= 0 at ϕS,1 = π for SQUID 1,
ϕS,2 = 0 for SQUID 2 and ϕS,3 = π/2 for SQUID 3 with α = π/2 (left)
and α = π (right). Left: The magnetic guiding field is aligned parallel to
the y-axis and thus the magnetization M precesses in the x-z-plane and
SQUIDs 1 and 2 measure a higher signal (but different phases). Right:
The magnetic guiding field is aligned anti-parallel to the x-axis and thus
the magnetization M precesses in the y-z-plane and SQUID 3 measures
a higher signal (but now SQUID 1 and 2 measure the same phase). . . . 76

3.14 acorr(α) = a0 · S (α) calculated from the measurement data according to
Eq. (3.12) for (1) an almost centered SQUID and (2, 3) two strongly
off-centered SQUIDs, arranged at (ϕS,2 − ϕS,3 ≈ π/2). As expected, the
almost centered SQUID shows the maximum amplitude with only little
dependence on α. For the off-centered SQUIDs acorr strongly depends on
α. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.15 The weighted phase difference ∆Φ for a step-by-step rotating magnetic
guiding field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.16 The residuals of the weighted phase difference after subtraction of the
Earth’s rotation and geometric effects according to Eq. (3.14). . . . . . . 79

3.17 Top: Weighted phase difference ∆Φ (data-bin: 320 s) for all seven runs
(single gradiometer data) after subtraction of estimated linear terms ∆Φlin
(dominated by the Earth’s rotation) for better representation. The re-
maining parabolic shaped structure is the contribution of the RBS-shift
(in particular the self-shift). Note that the phase noise is much less than
the symbol size. Bottom: The phase residuals after subtraction of the
entire fit-model ∆Φc according to Eqs. (3.18),(3.19) and (3.20). The in-
crease of the phase noise is caused by the exponential decay of the signal
amplitudes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.18 Weighted phase difference after subtraction of the entire fit-model ∆Φc

according to Eqs. (3.18), (3.19) and (3.20) divided by the phase un-
certainty to detect possible structures in the residuals. The normalized
residuals should be Gaussian distributed around zero with σ = 1. . . . . 85

3.19 The residuals of the weighted phase difference data of a single run (j=6)
with a fit model without the cross-talk terms. The residuals are clearly
not Gaussian distributed around zero (unlike the residuals using the com-
plete fit model, compare Fig. 3.17). . . . . . . . . . . . . . . . . . . . . . 90
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3.20 Allan Standard Deviations (ASD) of the residual phase noise (top) and
the corresponding frequency noise (bottom) of a single run (j = 6). The
total observation time was T = 90000 s. With increasing integration
times τ the uncertainty in phase decreases with σASD ∝ τ−

1
2 and the

uncertainty in frequency with σf, ASD ∝ τ−
3
2 indicating the presence of

white (Gaussian) noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.21 Allan Standard Deviations (ASD) of the residual phase noise of a single

run (j = 6) if one does not integrate the Cross-Talk term into the fit model
(see Fig. 3.19). For short integration times τ < 300 s the uncertainties
decrease according to the CRLB power law, but then strong deviations
occur due to the Cross-Talk phase shift that has not been accounted for. 94

3.22 Comparison of the Allan Standard Deviations (ASD) of the residual phase
noise (top) and frequency noise (bottom) of a single run (j = 3) for the
correct fit model (black) and if one does not integrate the Cross-Talk term
into the fit model (gray). In run j = 3 the influence of the Cross-Talk is
smaller compared to Fig. 3.21. . . . . . . . . . . . . . . . . . . . . . . . 95

4.1 Principle drawing of the cylindrical sample cell with two silicon electrodes
inside a conductive housing at ground potential. The housing is filled with
SF6 and the sample cell is filled with a mixture of 3He, 129Xe and SF6.
The housing is placed directly below the cryostat. For further information
on the high voltage feed-through and shielding electrodes see p. 103. . . 101

4.2 The housing of the EDM cell made of conductive plastic (PE with graphite
additives) constructed by A. Scharth and S. Zimmer (Institut für Physik,
Uni Mainz). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.3 Principle drawing of the leakage current detection with double shielded
cables and connections, and the pA-meter at the high potential. The
connections and the pA-meter for the first electrode are shown. The
setup for the other electrode is the same (with a separate pA-meter). . . 104

4.4 The measured leakage current of the EDM cell for a high voltage of 1 kV.
The insulation resistance of the EDM cell is in the order of R = 1015 Ω. 106

4.5 Schematic diagram of the pA-meter calibration circuit. A generator is
coupled to the input of the pA-meter via an ceramic capacitor with a
capacity of Cext = 12.1 ± 0.2 pF and an insulation resistance Rleak ≈
1015 Ω. There are additional offset currents Ioffset on the printed circuit
board and directly inside the IC that flow into the integrator input of the
pA-meter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.6 The pA-meter offset current Ioffset ≈ 60 fA (measured with Ugen = 0). . . 107
4.7 Calibration of the pA-meter. Top: Waveform of the generator output

voltage. Bottom: Corresponding measured input current for U0 = 10 V
and Cext = 12.1 pF. The input current is +1.2 pA for increasing input
voltage, and -1.2 pA for decreasing input voltage. The uncertainty is
about 2% for input currents in the pA range (stemming from the uncer-
tainty on Cext). For smaller currents, the largest uncertainty is caused by
the offset currents that flow into the integrator input of the pA-meter, as
these currents vary with time (see Fig. 4.6). . . . . . . . . . . . . . . . 108
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4.8 Schematic diagram of the High Voltage supply unit. A two-channel Iseg
NHQ provides the positive and negative high voltages. The four relays are
used to select the negative or positive voltage supply individually for each
electrode. The relays and the NHQ are controlled by a micro controller
that communicates with the measurement PC outside the shielded room
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