

a voxel engine Neutron Transport Monte Carlo Simulation

Position Sensitive Neutron Detectors 2024

10.4.2024

Markus Köhli^{1,2}, M. Schrön³, S. Zacharias³, U. Schmidt¹

¹Physikalisches Institut, Heidelberg University, Germany ²StyX Neutronica GmbH, Mannheim, Germany ³Dep. Monitoring and Exploration Technologies, Helmholtz Centre for Environmental Research GmbH – UFZ, Leipzig, Germany

Bundesministerium für Bildung

DFG Deutsche Forschungsgemeinschaft

	Physikalisches Institut	Heidelberg University	

Physikalisches Institut	Heidelberg University	

.....

Physikalisches Institut	Heidelberg	University	
	0		

2

MCNP input file

File Edit Options Buffers Tools Help

3	D	×	B	B	3	of	00	B	Q	9	V	8
									× •			

-*-mcnpgen-*- Pd-103 photon s	ource,H2O phar	it filled w/cubes,1 cube	e has a	sphe
c Cell Cards	4			
1 1 -101 2 -3	\$ sr-90 source	in silver toil		
2 10 - 2.7 - 24 - 3	\$ Al filter			
 3 2 -8.02 -6 20 -5 (1:3:-4)	\$ SS encapsula	ition		
4 2 -8.02 -8 0 -7	⇒ 55 rou 1_1 ⊄ lore	a watar bay		
-20 21 -22 23 -24 23 111	$1 = 1$ p $a_1 b_2$	\$ water cubes		
11 4 -1 0 -32 33 -34 35 -30 3	31 u=1 lat=1 fi	$11 = -1 \cdot 1 = 1 \cdot 1 = 1 \cdot 1 & 2$		
2 1 25r	a der idder in	\$ water cubes		
12 3 -1.293e-3 -90 u=2	\$ air s	phere inside cube		
13 2 -8.02 90 U=2	\$ SS sur	rounding sphere inside	cube	
90 3 -1.293e-3 -100 -21		\$ air below box		
91 3 -1.293e-3 -100 -20 21 (2	2:-23:24:-25)	\$ air around box		
 92 3 -1.293e-3 -100 20 #1 #2	#3 #4	<pre>\$ air outside src/rod</pre>		
 100 0 100		\$ bounding region		
A SUDEACE CADDS				
1 pz 03574	\$ source	top plane		
2 pz 03074	\$ source	bottom plane		
3 cz .475	\$ source	outer radius		
4 pz .00574	\$ A1 f	ilter bottom plane		
5 cz .525	\$ SS encapsul	ation outer radius		
6 pz 1.4	\$ SS encapsul	ation top plane		
7 cz .2	\$ roc	l <mark>o</mark> uter radius		
8 pz 2.4	\$ roc	l top_plane		
20 pz 0.	\$ large box t	op plane		
ZI pz -1.2	S large box b	ottom plane		
22 px 6	\$ large box x	min		
23 pX0 24 pV 6	\$ large box y	max		
25 pV - 6	\$ large box y	min		
30 pz4	\$ cube top	plane		
31 pz8	\$ cube bot	tom plane		
32 px .2	\$ cube xma	X		
33 px2	\$ cube xmi	n		

Physikalisches Institut Heidelberg University

re.

...............

Physikalisches Institut	Heidelberg University	

polyethylene rose in a box

Physikalisc	hes Institut	Heidelberg	University	•
0.0		0	-	

polyethylene rose in a box

Neutron tool developed in collaboration with environmental sciences

HELMHOLTZ ZENTRUM FÜR UMWELTFORSCHUNG UFZ

Physikalisches Institut	Heidelberg University
	8 9

Neutrons on soil and water

	-		
			5.92
	Physikalisches Institut	Heidelberg University	
	Thysikaliselies institut	inclucious oniversity	

	Physikalisches Institut	Heidelberg University	

....

..........

ANOS - The Cosmic Neutro	on Soil Moisture S	imulator								
	Simulate	Pause	Stop Cl	lear #neut maxim	rons: Neutrons: um:	939100 5000000		(537/s) -02:06:02	Refresh status every <u>100</u> neutrons	Export
Physical Parameters Comput	tational Parameters	s Detec	tor Setu	p Export	& Display			Live: Birds-eye View & S	spectra Range View Spatial View	
								240		
Outline on Distory1		Layers a	are arranged in	the vertical dire	ction, representi	ng different materials	; or 2D gridded patterns	240		
	6 %	Layers						160		
			Position	Height	Material	Matrix	Load Minimal Config	100		
Air Humidity		1	-1000	920	11					
	7	2	-80	30	11			80 -		
Atmospheric depth [a/cm²]		4	-2.5	0.5	11		+			
	1020	5	-2	2	11			_		
	1020	6	0	3	20		Source Laver 2	5 °		
							Source Layer 2			
							Detector Layer 4	-80		
							Ground Layer 6	-00		
Topological presets (water, lan	nd)									
Nono								-160 -		
							Material Codes			
River, width [m]	10						Use layer maps	·		
Coast at x [m]	0							-240	160 -90 0 90	160 240
Island, diameter [m]	10						view layer maps	210	×[m]	200 210
C tala danata fal	10						Load Save	7000		
🔘 Lake, diameter [m]	10							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	icoming Spectrum	
								6000 - S	urface Spectrum	I .
								5000 - B	ackscattered Spectrum	- A
										AN .
								4000		
								3000		s l
								2000		
								2000	and the second se	
								1000	- white -	<u> </u>
								0		
								10-, 10-	Energy [MeV]	100 1000

9

* T. Sato Features and applications of the analytical model for estimating terrestrial cosmicray fluxes: PARMA/EXPACS

9

.............

			Performa	nce [n/(s·GI	Hz·core)]	
Nº	name	description	URANOS	MCNP6	GEANT4	
1	std. setup	water body, 5 g/m ³ air humidity NTP	930	300	70	
2	std. setup	ground with 10% soil moisture, 5 g/m ³ air humidity NTP	450		31	Epithermal &
3	std. setup	ground with 1 % soil moisture, 5 g/m ³ air humidity NTP	265	250	17	Fast & High Energy
4	std. setup	like Nº 1, with full domain tracking enabled	710			
5	std. setup	like N° 1, with thermal transport enabled	260	260	16	With
6	std. setup	like Nº 3, with thermal transport enabled	130	220	9	Thermal
7	std. setup	like Nº 3, with thermal transport and full domain tracking enabled	120			
8	UFZ site	with 10% soil moisture	500			
9	UFZ site	like Nº 8, without voxel geometry but same layering	420			
10	detector	thermal spectrum onto a side face with $\vartheta = 0^{\circ}$	9170			
11	detector	like № 10, with an americium-beryllium spectrum	4060			

Physikalisches Institut	Heidelberg University	

.........

........

11

11

 \gg

>>

11

>>

11

Snow Water Equivalent

P. Schattan et al., to be published

3D Laser Scanner

* P. Schattan Cosmic-ray neutron sensing of snow water equivalent in heterogeneous alpine terrain

13

Cosmic-ray neutron sensing of snow water equivalent in heterogeneous alpine terrain

13

 Physikalisches Institut	Heidelberg	University	
 	0	-	

Physikalisches Institut	Heidelberg University	

.....

		_
	Haidalbarg University	and the second states
Physikalisches Instit	ut Heldelberg University	

>>

15

Bonner Spheres

.......

.................

16 [1] https://www.ptb.de/cms/en/ptb/fachabteilungen/abt6/fb-64/643-neutron-spectrometry/nemus/neutron-spektrometer-nemus-neutron-multisphere-spectrometer.html

 Physikalisches Institut	Heidelberg	University	1
 	0		

Detector efficiency calculation

URANOS Demonstration

		7
	11 at dalle and 11 at a sector.	and the second second
Physikalisches Instr	ut Heidelberg University	

User interface

The Cosmic Neutron Soil Moisture Simulate	pr						- 🗆 X
Simulate	Pause Stop Clear		317730 2000000			Refresh every 210 neutrons	Save CFG Export
					Live: Birds-eye View	w & Spectra Range View Spatial View	Detector
cal Parameters Computational Parameters	Detector Showcase	Folders	Export Display				1421852064 + +
	Lavers are arranged in the ve	artical direction	representing different materials or	2D gridded patterns			
Water Content [Vol%]	Position z denotes the depth Layers override topological pr	below surface resets	(z=0) in [m] and refers to the upper	edge of the layer			Constant Action
10 %	Lavera				0,5		
Porosity [Vol%]	Layers			Layer Control			
	Position	Height	Material Matrix	Minimum	0.25 -		
umidity	1 -0.45	0.05	11 1M [700]	- Configuration			
0.40 g/m	3 -0.25	0.15	11 2IVI [700]	+ Generate			
umidity Exponential Length	4 -0.2	0.15	11 4M [700]	Severe Lever			
	5 -0.05	0.05	11 5M [700]	Source Layer 3	. × °		
spheric depth	6 0	0.003	20	Detector Layer 3			AND DECK
1020 g/cm ²				Ground Layer 6	0.25		
off rigidity [GV]				Material Codes	-0,23		
10				Hatenar Codes			
				Use layer maps	-0.5		
				View layer maps	-0,5		
				Layer Configuration			
				Load Save		-0,5 -0,25 0	0,25 0,5
						x [m]	
quipment					7000 E		
Nuclear Fission Source			x Position y Pos	tion z Position	6000 <u>-</u>	- Incoming Spectrum	
Nuclear Fusion Source			0.03	-0.225	5000	Surface Spectrum	N P
ImPo Laboratory Source			x Size y Size	z Size Radius	4000		
white Laboratory Source			U		3000		
Ioderated Californium Source			Opening Angle	Source Direction	2000		
International Action Action International Action Ac			-1	0	1000		had a second sec
the second			Directional Angle	0 -> 0 <- 0			

Heidelberg University

......

.................

.......

 Physikalisches Institut	Heidelberg	University	•
	•		

..............

Physikalisches Institut	Heidelberg	University	
	0		٤.

.......

			Ly Enlarged Visualization	
# URANOS - The Cosmic Neutron Soil Moisture Simulator URANOS - The Cosmic Neutron Soil Moisture Simulator Simulate Pause Stop Clear #neutrons: maximum:2	Uranos.cfg written 0 R	- C X	× 0,5	
Physical Parameters Computational Parameters Detector Showcase Folders Export Sol Water Content [Vol%] Layers are arranged in the vertical direction, representition or denotes the detty halow purples of 2-m in final Detector Showcase Folders Export	Display Birds-eye View & Spe	ctra Range View Spatial View Detector		
10 % Layers Sol Porosity [Vol%] 50 % Position Velocity	0,5 Matrix Minimum		0,25	
Air Humidity 1 -0.45 0.05 11 0.40 g/m ³ 2 -0.4 0.15 11 2 -0.4 0.15 11 3 -0.25 0.05 11 4 -0.2 0.15 11 5 -0.05 0.05 11 6 0 0.003 20	1M [700] - - Configuration 0,25 2M [700] + Generate - - 3M [700] - Source Layer 3 - 5M [700] - - - - Ground Layer - - - -			
Cut-off rigidity [GV]	Material Codes Material Codes Use layer maps Use layer maps Layer Configuration Load Save	-0,25 0 0,25 0,5 x [m]		
Load Equipment O Nuclear Fission Source Nuclear Fusion Source O Nuclear Fusion Source O AmBe Laboratory Source	x Position y Position z Position 0.6492 0.707007 -0.225 x Size y Size z Size Radius 0 0 0 0 c c 0	ning Spectrum ace Spectrum scattered Spectrum		
O Moderated Californium Source O Monoenergetic [MeV] 1 Thermal O None ✓ Thermonudear Transport	Opening Angle Source Direction -500 [-1] O -1000 Directional Angle -> O <-	0,0001 0,01 1 100 Energy [MeV]		
		a a a a a a a a a a a a a a a a a a a	-0,5 -0,25 0 0,25 0,5 	

>>

Small-scale laboratory test

				Enlarged Visualization	
he Cosmic Neutron Soil Moisture Simulator Simulate P al Parameter Computational Parameters Vater Content [Vol%] 9,5 % vorosity [Vol%] 50 % unidity 0,40 g/m ³ unidity Exponential Length 1020 g/cm ² off rigidity [GV] 10	ause Stop Clear #neutrons: maximum: 1 Detector Showcase Folders Export ayers are arranged in the vertical direction, represent Position z denotes the depth below surface (z=0) in [m], ayers override topological presets Material 1 -4 0.37 20 2 -3.63 1.63 11 3 -2 0.53 11 4 -1.47 0.43 11 5 -0.94 0.05 11 6 -0.94 0.01 11 8 -0.79 0.11 11 9 -0.675 0.2 11 10 -0.475 0.475 11 11 0 0.5 20	1000000 nt Display thrig different materials or 2D gridded patterns n] and refers to the upper edge of the layer M Matrix 2M (900) 3M (900) 4M (900) 5M (900) 6M (900) 5M (900) 6M (900) 5M (900) 6M (900) 9M (900) 9M (900) 10M (900) Waterial Codes View layer maps Layer Configuration Load	0 Refresh every 49 neutrons		
d Equipment Nudear Fission Source Nudear Fusion Source AmBe Laboratory Source Moderated Californium Source Monoenergetic [MeV]	μ β	x Position y Position 2.30973 -2.39063 -0.93 x Size y Size z Size Radius 0 0 0 0.3 Opening Angle	100 50 50 50 50 50 50 50 50 50		

URANOS model paper 2023

Paper:

Public repository (Sources, Wiki, Windows, Linux):

Gründe, die für GitLab	spreche	n Preise Vertrieb kontaktieren Erkunder	file	os	requires
Q Search or go to		Markus Köhli / uranos	URANOS*	Windows	ROOT 6.22.08
Projekt			URANOS64bit	Windows	ROOT 6.30.02
U uranos			URANOS-Ubuntu20-*	Linux/Ubuntu 20	ROOT 6.30.02, QT 5.14.2
රීසි Verwalten	>	& main ∽ uranos	URANDS-Ubuntu22-*	Linux/Ubuntu 22	ROOT 6.30.02, QT 5.15.3
Planen	>		URANOS-Ubuntu23-*	Linux/Ubuntu 23	ROOT 6.30.02, QT 5.14.2
Code	>	Markus Köhli erstellt vor 2 Wochen		Linari, o banta 20	
🕼 Build	>		URANOS-CentOS7-*	Linux/CentOS 7	ROOT 6.22.08, QT 5.9.7, QT 5.13.1

https://gitlab.com/mkoehli/uranos

• Novel neutron Monte Carlo tool

		5.92
Physikalisches Institut	Heidelberg University	
	3	

URANOS

- Novel neutron Monte Carlo tool
- Ready-to-use User Interface

		5.92
Physikalisches Institut	Heidelberg University	
	······································	

URANOS

- Novel neutron Monte Carlo tool
- Ready-to-use User Interface
- Voxel engine with simple png based material codes

Physikalisches	s Institut Heidelberg University	

- Novel neutron Monte Carlo tool
- Ready-to-use User Interface
- Voxel engine with simple png based material codes
- Fast calculation routine with predefined spectra and detector response functions

Physikalisches Institut	Heidelberg University	

- Novel neutron Monte Carlo tool
- Ready-to-use User Interface
- Voxel engine with simple png based material codes
- Fast calculation routine with predefined spectra and detector response functions

URANOS Community Version:

Now available! (and in development)

	Physikalisches Institut	Heidelberg University	
0.0.0		5 ,	

- Novel neutron Monte Carlo tool
- Ready-to-use User Interface
- Voxel engine with simple png based material codes
- Fast calculation routine with predefined spectra and detector response functions

URANOS Community Version:

Now available! (and in development)

