Calibration of the TimePix chip & pad enlargement chips

5th RD51 collaboration meeting

Markus Köhli Albert-Ludwigs-Universität Freiburg

May, 25 2010

Contents

Experimental setup

II Comparison of pixel sizes

III Cross-talk of passivated pixels

IV Charge calibration

/ New test chamber

Test setup

GEM+TimePix

same potential difference (ΔV_{GEM}) per GEM

charge is spread over several pixels (>50)

Consequences

- few e⁻ per channel (strong diffusion effects within the GEM-stack) •
- \rightarrow high gas gain necessary for detection of minimal ionizing particles

Pixel geometries

Postprocessed chips (IZM)

- 1x1: metalliziation extended from $\approx 20x20 \ \mu m^2$ to $\approx 50x50 \ \mu m^2$
- 2x2: 3 of 4 pixels passivated, then metallized pixel size 105x105 μm²

Motivation: enlarged pixels

- more charge per pixel
 - → higher probability of detection
- less gas amplification needed → fewer positive lons
- optimization of spatial resolution vs. pixel size

6 keV Fe⁵⁵ cluster

1x1

bump bond pads

profile - postprocessed pixels

3

1x1 and 2x2

Setup

1x1 and 2x2

Setup

- gas: HeCO₂/ Fe55 (6 keV photons)
- 1x1 and 2x2 with similar thresholds

Procedure

- find clusters
- sum up the *TOT* values of the pixels (TOT - counts clock cycles above a chosen threshold)
- fit gauss (peak)
- take mean = TOTVolume

Comparison

with **pixel enlargement**: \rightarrow less gas gain needed $(\Delta V_{GEM}) \approx 50 \text{ V}$

Passivated pixel cross-talk

5

TOT-drop

insulation of the passivation not sufficient

 \rightarrow charge on masked pixels

Does cross-talk depend on the **deposited charge**?

Fe55-source Volt./GEM: 385V 2x2 all pixels

Passivated pixel cross-talk

6

TOT-drop

Simulating maximum charge

1x1 chip

pixels are saturated \rightarrow no **real** charge information

Comparison: 2x2 with a rebinned 1x1

Is there a amount of charge pixels start cross-talking?

ratio of cross-talking clusters in real data with corresponding (upper) quantile of rebinned 1x1

charge at quantile should be constant assuming a crictial charge at which passivated

pixels start showing a signal

Passivated pixel cross-talk

Examine:

ratio of cross-talking clusters vs. applied applied voltage

Effect:

cross-talk probability depends on E-Field strenght (not only on the amount of charge)

Test settings

Pixel calibration

Procedure:

- test pulse at test capacity Ctest (ca. 8 fF)
- → injected charge on pixel

scheme: charge-/ discharge curve Ctest

MUROS

MUROS vs. USB

USB Interface(1.2.2): calibration with test pulses not possible

Test pulses

Problem

• current in discharging flank varies from pixel to pixel

 \rightarrow variation in TOT

Design and characterization of 64K pixels chips working in single photon processing mode Xavier Llopart Cudié 2007

MUROS vs. USB

Until now: calibration *chipwise* (mean over all pixel)

• TOT counts depend linearly on the deposited charge

$$TOT = b \cdot Q + a$$

 \rightarrow every pixel has its own response function

Precision

Distribution of slopes (Muros)

variation of all slopes: 4% relative error on individual pixel slope fits: 3%

Under assumption of a convolution of the given distribution of the pixels with a gauss curve (fit error):

 \rightarrow variation of slopes ca. 2%

calibration with higher precission necessary

data: 1x1 metallized

Calibration: shape

reconstructed clusters with global (same scaling for all pixels) and local charge calibration

→ Shape of cluster-TOT spectrum is not changed by charge calibration

data: 1x1 metallized GEM voltage 375 V

14

Test chamber

Goals

- modular construction
- non magnetic materials
- gas-tight
- GEM (mit 12x12 cm²) incl.
 - readout electronics
 - HV
- experiments with:
 - N₂-laser
 - testbeam
 - radioaktive source
- simple exchange of TimePix chips

Test chamber

test chamber for gaseous detectors with max. 12x12 cm²

Summary

- Σ
- pixel enlargement reduces necessary gain
- cross-talking (at high voltages) does not depend on deposited charge
- pixelwise calibration could improve charge reconstruction
- USB-interface(1.2.2) should not be used for calibration
- a new test chamber has been developed

- more studies in calibration with test pulses
- comparison of postprozessed chips (n x n) in respect to:
 - gas amplification
 - spatial resolution
 - detection efficiency

17

The TimePix chip 2006

A modified MediPix2 Chip for TPC applications

Motivation:

knowing the time of arrival of avalanches at pixels

 \Rightarrow use 14bits counter not for counting the #hits, but for counting clock cycles

- (only lower threshold)
- clock up to 100 MHz in each pixel
- threshold (whole chip): \approx 700 e⁻
- 4 different modes possible

modes definable for every pixel using a "map"

TPC-Setup:

- use Time-arrival mode
- use TOT for calculating charge

TimePix chip with active area (green)

