URANOS

Markus Köhli¹,², Martin Schröer², Klaus Desch³, Ulrich Schmidt¹

modeling cosmic-ray neutrons

- simple user interface
- computationally efficient
- new geometry concept of layers and voxels

The User Interface

URANOS is freely available from the websites of the Physikalisches Institut Heidelberg and the UFZ Leipzig.

Sources

- PulS Cosmic Neutron source

Cross Sections

- Cross sections and weighted cross sections
- JENDL/HE

Neat Examples

- Extremely heterogeneous snow cover at the Konvental glacier (Alps)
- Drip irrigation in Valencia (Spain)

Layer and voxel geometry

- The geometry is organized in layers. This allows to easily build up a stack of homogeneous subdomains with user pre-defined layer properties and height of each layer. Each layer further may be subdivided by homogeneous sub-domain voxels.

Simulation

- URANOS modeling process, exemplarily for a neutron density in an urban environment:
 1. Creation of a computational mesh (VLP-technology)
 2. Creation of a 3D-model (grayscale)
 3. Generation of subdomains (layerwise, transversal, voxel)
 4. Construction and input of the neutron density

Footprint characteristics

- Field-scale soil moisture monitoring with cosmic-ray neutrons

Export options and configurations of the live output

- Footprint characteristics involved in soil moisture monitoring and soil properties determination (left)
- Footprint characteristics involved in soil moisture monitoring and soil properties determination (right)

Measurement

- Measurement of the neutron density for Americium-241, ²³⁵U

End

1. Martin Schröer, Markus Köhli, Klaus Desch, Ulrich Schmidt, University of Heidelberg, Germany
2. Markus Köhli, University of Heidelberg, Germany
3. Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany