URANOS

Markus Kohli1,2, Martin Schröer, Klaus Desch3, Ulrich Schmidt4

1 Physikalisches Institut, Heidelberg University
2 Physikalisches Institut, University of Bonn
3 Helmholtz Centre for Environmental Research GmbH – UFZ

a voxel engine Neutron Transport Monte Carlo Simulation

- simple user interface
- computationally efficient
- New geometry concept of layers and voxels

The User Interface

The geometry is generated in layers. This allows to easily build up a scenario of homogeneous materials with the inner parameter being content and target of each layer. Each layer thickness can be set for study the thickness distributions for the voxels.

Layer and voxel geometry

The URANOS GUI has been developed in collaboration with the UFZ Leipzig targeting especially the use of neutron ray surveys. For control over the settings of the input file, a simple user interface, which allows to define layers is required.

Neat Examples

URANOS modeling process, exemplarily for a neutron density in an urban environment:

- Choice of a simulation context
- Transfer to a selected simulation, e.g., calculation of a voxel model for the geometry unit and export of the neutron density

Cross Sections

Only few nuclides with significant contributions are taken into account. The user can select these nuclides with control less than 0.1% of the total cross section.

Conversion treatment

A reaction can change the energy of a neutron or an epithermal neutron. An inelastic neutron energy loss is converted to a delta energy. Inelastic neutron energy loss is calculated with the following expression:

\[E_{\text{loss}} = E_{\text{neutron}} - E_{\text{target}} \]

where \(E_{\text{neutron}} \) is the initial neutron energy and \(E_{\text{target}} \) is the target energy. In the case of an inelastic collision, the resulting energy is assigned to the target nuclide with the lowest priority in the target list.

Sources

Available source definitions:
- spot source
- point-source
- cylindrical source
- planar source
- rectangular source
- Sedov source
- American-Diploma
- Paulson
- Littke
- Monte Carlo Source
- Coherent Neutron Source

Footprint characteristics of the URANOS voxel engine Neutron Transport Monte Carlo Simulation

- Neutron transport simulation for the voxel engine
- Efficiency of neutron source
- Neutron source modeling

Publication Showcase

Markus Kohli, Martin Schröer, Klaus Desch, Ulrich Schmidt

Physikalisches Institut, University of Bonn
Nussallee 12, 53115 Bonn, Germany

Ulrich Schmidt
Helmholtz Centre for Environmental Research GmbH – UFZ
Feldweg 50, 04318 Leipzig, Germany

URANOS is freely available from the websites of the Physikalisches Institut Heidelberg and the UFZ Leipzig.