ESS Neutron Scattering Facility

Linear Accelerator
2 GeV
3 ms Pulse
62.5 mA
ESS Instrumentation

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Detector area [m²]</th>
<th>Wavelength range [Å]</th>
<th>Time resolution [µs]</th>
<th>Spatial resolution [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-purpose imaging</td>
<td>0.5</td>
<td>1 - 20</td>
<td>1</td>
<td>0.001 - 0.5</td>
</tr>
<tr>
<td>General purpose polarised SANS</td>
<td>5</td>
<td>4 - 20</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>Broad-band small sample SANS</td>
<td>14</td>
<td>2 - 20</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>Surface scattering</td>
<td>5</td>
<td>4 - 20</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>Horizontal reflectometer</td>
<td>0.5</td>
<td>5 - 30</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>Vertical reflectometer</td>
<td>0.5</td>
<td>5 - 30</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>Thermal powder diffractometer</td>
<td>20</td>
<td>0.6 - 6</td>
<td>< 10</td>
<td>2 × 2</td>
</tr>
<tr>
<td>Bi-spectral powder diffractometer</td>
<td>20</td>
<td>0.8 - 10</td>
<td>< 10</td>
<td>2.5 × 2.5</td>
</tr>
<tr>
<td>Pulsed monochromatic powder diffractom.</td>
<td>4</td>
<td>0.6 - 5</td>
<td>< 100</td>
<td>2 × 5</td>
</tr>
<tr>
<td>Material science & engineering diffractom.</td>
<td>10</td>
<td>0.5 - 5</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>Extreme conditions instrument</td>
<td>10</td>
<td>1 - 10</td>
<td>< 10</td>
<td>3 × 5</td>
</tr>
<tr>
<td>Single crystal magnetism diffractometer</td>
<td>6</td>
<td>0.8 - 10</td>
<td>100</td>
<td>2.5 × 2.5</td>
</tr>
<tr>
<td>Macromolecular diffractometer</td>
<td>1</td>
<td>1.5 - 3.3</td>
<td>1000</td>
<td>0.2</td>
</tr>
<tr>
<td>Cold chopper spectrometer</td>
<td>80</td>
<td>1 - 20</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Bi-spectral chopper spectrometer</td>
<td>50</td>
<td>0.8 - 20</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Thermal chopper spectrometer</td>
<td>50</td>
<td>0.6 - 4</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Cold crystal-analyser spectrometer</td>
<td>1</td>
<td>2 - 8</td>
<td>< 10</td>
<td></td>
</tr>
<tr>
<td>Vibrational spectroscopy</td>
<td>1</td>
<td>0.4 - 5</td>
<td>< 10</td>
<td></td>
</tr>
<tr>
<td>Backscattering spectrometer</td>
<td>0.3</td>
<td>2 - 8</td>
<td><</td>
<td></td>
</tr>
<tr>
<td>High-resolution spin echo</td>
<td>0.3</td>
<td>4 - 25</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>Wide-angle spin echo</td>
<td>3</td>
<td>2 - 15</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>Fundamental & particle physics</td>
<td>0.5</td>
<td>5 - 30</td>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>282.6</td>
</tr>
</tbody>
</table>
ESS Instrumentation

<table>
<thead>
<tr>
<th>Instrument</th>
<th>(^{10}\text{B thin films})</th>
<th>(\text{Detector technology})</th>
<th>(^{3}\text{He})</th>
<th>(\text{Micropattern})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-purpose imaging</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>o</td>
</tr>
<tr>
<td>General purpose polarised SANS</td>
<td>0</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Broad-band small-sample SANS</td>
<td>0</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Surface scattering</td>
<td>0</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Horizontal reflectometer</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>o</td>
</tr>
<tr>
<td>Vertical reflectometer</td>
<td>-</td>
<td>0</td>
<td>+</td>
<td>o</td>
</tr>
<tr>
<td>Thermal powder diffractometer</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Bi-spectral powder diffractometer</td>
<td>0</td>
<td>+</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>P-M powder diffractometer</td>
<td>0</td>
<td>+</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>MS engineering diffractometer</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Extreme conditions diffractometer</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>Single crystal diffractometer</td>
<td>0</td>
<td>+</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Macromolecular diffractometer</td>
<td>-</td>
<td>0</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>Cold chopper spectrometer</td>
<td>+</td>
<td>0</td>
<td>o</td>
<td>-</td>
</tr>
<tr>
<td>Bi-spectral chopper spectrometer</td>
<td>+</td>
<td>+</td>
<td>o</td>
<td>-</td>
</tr>
<tr>
<td>Thermal chopper spectrometer</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cold crystal analyser spectrometer</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Vibrational spectrometer</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Backscattering spectrometer</td>
<td>-</td>
<td>0</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>High-resolution spin echo</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Wide-angle spin echo</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Fundamental & particle physics</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

ESS TDR 2013
Neutron Examples

Neutron Examples

Neutron Examples

ESS Instrumentation

<table>
<thead>
<tr>
<th>Instrument</th>
<th>10B thin films</th>
<th>Detector technology</th>
<th>Micropattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-purpose imaging</td>
<td>-</td>
<td>Scintillators</td>
<td>-</td>
</tr>
<tr>
<td>Extreme conditions diffractometer</td>
<td>-</td>
<td>WSF</td>
<td>-</td>
</tr>
<tr>
<td>Single crystal diffractometer</td>
<td>-</td>
<td>Anger</td>
<td>-</td>
</tr>
<tr>
<td>Macromolecular diffractometer</td>
<td>-</td>
<td>3He</td>
<td>-</td>
</tr>
<tr>
<td>Fundamental & particle physics</td>
<td>-</td>
<td>Micropattern</td>
<td>-</td>
</tr>
</tbody>
</table>

[1]
ESS Instrumentation

<table>
<thead>
<tr>
<th>Instrument</th>
<th>10B thin films</th>
<th>Detector technology</th>
<th>Micropattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-purpose imaging</td>
<td>-</td>
<td>Scintillators</td>
<td>Rate</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>WSF</td>
<td>Resolution</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>Anger</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>3He</td>
<td></td>
</tr>
<tr>
<td>Extreme conditions diffractometer</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single crystal diffractometer</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macromolecular diffractometer</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fundamental & particle physics</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[1] The Multi-Blade Detector, ILL Grenoble
[3] PSI, neutron radiography
ESS Instrumentation

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Detector technology</th>
<th>Micropattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-purpose imaging</td>
<td>10B thin films</td>
<td>-</td>
</tr>
<tr>
<td>Extreme conditions diffractometer</td>
<td>Scintillators</td>
<td>-</td>
</tr>
<tr>
<td>Single crystal diffractometer</td>
<td>WSF</td>
<td>-</td>
</tr>
<tr>
<td>Macromolecular diffractometer</td>
<td>Anger</td>
<td>-</td>
</tr>
<tr>
<td>Fundamental & particle physics</td>
<td>3He</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Rate</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Resolution</td>
<td>+</td>
</tr>
</tbody>
</table>

1. The Multi-Blade Detector, ILL Grenoble
2. (MCP) www.neutrondetector.com
3. PSI, neutron radiography
The MediPix Family

Hybrid-Detector Concept:

MediPix 1
- active area 1,2 cm²
- matrix of 64 x 64 pixels
- 1,6 M transistors/chip
- 170 x 170 μm² per pixel
- 1 discriminator per pixel
- 15-bit counter
- threshold (whole chip): ≈ 1500 e⁻

MediPix 2
- 1,4 x 1,4 cm²
- matrix of 256 x 256 pixels
- 0.25 μm CMOS technology (33M transistors/chip)
- 55 x 55 μm² per pixel
- serial or parallel I/O (min. readout time of full matrix 266 μs)
- preamplifier/shaper (t-rise ≈ 150 ns)
- 2 discriminators (lower and upper threshold)
- 14-bit counter
- threshold (whole chip): ≈ 1000 e⁻

TimePix

<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Journal/Conference</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>Single neutron pixel detector based on Medipix-1 device</td>
<td>(IEEE)</td>
</tr>
<tr>
<td>2005</td>
<td>Spatial resolution of Medipix-2 device as neutron pixel detector</td>
<td>(NIMA)</td>
</tr>
<tr>
<td>2004</td>
<td>Properties of the single neutron pixel detector based on the Medipix-1</td>
<td>(NIMA)</td>
</tr>
<tr>
<td>2005</td>
<td>Properties of neutron pixel detector based on Medipix-2 device</td>
<td>(IEEE)</td>
</tr>
<tr>
<td>2006</td>
<td>Neutron imaging with Medipix-2 chip and a coated sensor</td>
<td>(NIMA)</td>
</tr>
<tr>
<td>2008</td>
<td>Detection of fast neutrons with the Medipix-2 pixel detector</td>
<td>(IEEE)</td>
</tr>
<tr>
<td>2008</td>
<td>High-resolution UV, alpha and neutron imaging with the Timepix CMOS readout</td>
<td>(NIMA)</td>
</tr>
<tr>
<td>2009</td>
<td>Neutron Detector Based on Timepix Pixel Device with Micrometer Spatial Resolution</td>
<td>(SPIE)</td>
</tr>
<tr>
<td>2009</td>
<td>A coated pixel device TimePix with micron spatial resolution for UCN detection</td>
<td>(NIMA)</td>
</tr>
<tr>
<td>2009</td>
<td>High-resolution neutron radiography with microchannel plates: Proof-of-principle experiments at PSI</td>
<td>(NIMA)</td>
</tr>
<tr>
<td>2010</td>
<td>Fast neutron detector based on TimePix pixel device with micrometer spatial resolution</td>
<td>(IEEE)</td>
</tr>
<tr>
<td>2010</td>
<td>Monte-Carlo simulation of fast neutron detection using double-scatter events in plastic scintillator and Timepix</td>
<td>(IEEE)</td>
</tr>
<tr>
<td>2011</td>
<td>Design, Implementation and First Measurements with the Medipix Neutron Camera in CMS</td>
<td>(arxiv)</td>
</tr>
<tr>
<td>2011</td>
<td>Detection of fast neutrons with particle tracking detector Timepix combined with plastic scintillator</td>
<td>(Rad. Meas.)</td>
</tr>
<tr>
<td>2011</td>
<td>High-resolution strain mapping through time-of-flight neutron transmission diffraction with a microchannel plate neutron counting detector</td>
<td>(Strain)</td>
</tr>
<tr>
<td>2011</td>
<td>A high resolution neutron counting sensors in strain mapping through a transmission bragg edge diffraction</td>
<td>(IEEE)</td>
</tr>
<tr>
<td>2012</td>
<td>A highly miniaturized and sensitive thermal neutron detector for space applications</td>
<td>(AIP)</td>
</tr>
<tr>
<td>2012</td>
<td>High resolution neutron counting detectors with microchannel plates and their applications in neutron radiography, diffraction and resonance absorption imaging</td>
<td>(Neutron News)</td>
</tr>
<tr>
<td>2012</td>
<td>Neutron radiography with sub-15 μm resolution through event centroiding</td>
<td>(NIMA)</td>
</tr>
<tr>
<td>2013</td>
<td>Directional detection of fast neutrons by the Timepix pixel detector coupled to plastic scintillator with silicon photomultiplier array</td>
<td>(IOP)</td>
</tr>
<tr>
<td>2014</td>
<td>Fast Neutron Dosimeter using the pixelated detector TimePix</td>
<td>(Rad. Prot. Dos.)</td>
</tr>
<tr>
<td>2014</td>
<td>Position sensitive detection of neutrons in high radiation background field</td>
<td>(Rev. Sci. Instrum.)</td>
</tr>
<tr>
<td>2014</td>
<td>Characterization of Timepix Detector Coated with 1084C Film for High Resolution Neutron Imaging</td>
<td>(Proc. ICATPP)</td>
</tr>
<tr>
<td>2014</td>
<td>Dosimetry measurements using Timepix in mixed radiation fields induced by heavy ions; comparison with standard dosimetry methods</td>
<td>(J. Radiat. Res.)</td>
</tr>
<tr>
<td>2014</td>
<td>Time-of-flight measurement of fast neutrons with Timepix detectors</td>
<td>(JInst)</td>
</tr>
<tr>
<td>2015</td>
<td>Time-resolved neutron imaging at ANTARES cold neutron beamline</td>
<td>(JInst)</td>
</tr>
<tr>
<td>2016</td>
<td>Development and characterization of high-resolution neutron pixel detectors based on Timepix read-out chips</td>
<td>(JInst)</td>
</tr>
<tr>
<td>2016</td>
<td>Improved fast neutron detector based on timexip and plastic scintillating converter</td>
<td>(IEEE)</td>
</tr>
<tr>
<td>2017</td>
<td>Real-time Crystal Growth Visualization and Quantification by Energy-Resolved Neutron Imaging</td>
<td>(Sci. Rep.)</td>
</tr>
<tr>
<td>2017</td>
<td>Evaluation of Wavelength-Dependent Detection Efficiency of Neutron-Sensitive Microchannel Plate Detector</td>
<td>(Sensors and Mat.)</td>
</tr>
<tr>
<td>2018</td>
<td>Neutron Imaging with Timepix Coupled Lithium Indium Diselenide (J. Imaging)</td>
<td>(IEEE)</td>
</tr>
<tr>
<td>2018</td>
<td>Energy-Resolved Neutron Imaging for Reconstruction of Strain Introduced by Cold Working</td>
<td>(J. Imaging)</td>
</tr>
<tr>
<td>2018</td>
<td>Towards high-resolution neutron imaging on IMAT</td>
<td>(IOP)</td>
</tr>
</tbody>
</table>
The Time Projection Chamber

The Neutron TPC Trigger

Neutron collision with a boron nucleus (^{10}B)
The Neutron TPC Trigger
The Neutron TPC Trigger
The Neutron TPC Trigger

Neutron → ^{10}B → $^{11}\text{B}^*$ → $^4\text{He}^{2+}$

- $0.48\text{ MeV} \gamma$
- 0.84 MeV
- 1.47 MeV

Track & Trigger
The Neutron TPC

Diagram showing the components of a neutron time projection chamber (TPC):
- **Trigger**
 - Lightguide
 - Reflector
- **Converter**
 - Boron
 - Scintillator
- **Track**
 - Gas
The Neutron TPC

- Trigger
- Converter
- Track

- Lightguide
- Boron
- Gas

- Reflector
- Scintillator

n
The Neutron TPC
The Neutron TPC

Diagram showing the components of a Neutron Time Projection Chamber (TPC): Trigger, Converter, and Track. Key elements include Lightguide, Reflector, Scintillator, Boron, and Gas. Elements labeled with R_n, R_{He}, R_{Li}, and R_{Gas}.
The Detector
The Neutron TPC

TimePix3
(Ingrid)

Photon Sensor
The Neutron TPC: BODELAIRE
Field Cage Design

- Boron Carbide
- Boron Nitride
- Boron

Diagram showing the layers of materials:
- Reflector
- Lightguide
- Scintillator
- Reflector
Field Cage Design

Simulation: Electric Field Homogeneity
The TimePix Chip
The TimePix Chip

- 256 × 256 pixels @ 55 × 55 μm²
- 1.4 × 1.4 cm²
- 40 MHz clock
- ENC ca. 90 e⁻
The TimePix Chip

- 256 × 256 pixels @ 55 × 55 μm²
- 1.4 × 1.4 cm²
- 40 MHz clock
- ENC ca. 90 e⁻
The TimePix Chip

- 256 × 256 pixels @ 55 × 55 μm²
- 1.4 × 1.4 cm²
- 40 MHz clock
- ENC ca. 90 e⁻
The TimePix Chip

- 256 × 256 pixels @ 55 × 55 μm²
- 1.4 × 1.4 cm²
- 40 MHz clock
- ENC ca. 90 e⁻

Modes:
- Time Over Threshold (TOT)
- Time of Arrival (ToA)
- Geiger Counter
The TimePix Chip

- 256 × 256 pixels @ 55 × 55 μm²
- 1.4 × 1.4 cm²
- 40 MHz clock
- ENC ca. 90 e⁻

Modes:
- Time Over Threshold (TOT)
- Time of Arrival (ToA)
- Geiger Counter
TimePix Readout System

Octoboard:

[2] H. Muller, RD51 SRS Status December 2016, CERN
TimePix Readout System

Octoboard:

- Ethernet to PC
- FEC voltage supply
- Front end card incl. FPGA
- Chip voltage supply
- VHDCI cable
- Adapter card
- Timepix chip
- Intermediate board

[2] H. Muller, RD51 SRS Status December 2016, CERN
LCTPC Event Display

Detecting Neutrons
Test Detector

- Boron coated cathode
- Anode
- GridPix chips
Test Detector

- Boron coated cathode
- Anode
- GridPix chips
Neutron Conversion Tracks
Neutron Conversion Tracks

5-23 % Time Pixel (Random Pattern)
Event Example: Lithium
Event Example: Helium

![Spatial Projection and Time Projection](image)
Analysis and Results
Energy Loss in Gas

Energy loss of conversion ions in ArCO$_2$(70:30)

- Helium 1.50 MeV
- Lithium 1.00 MeV
Energy Loss in Gas

Energy loss of conversion ions in ArCO₂(70:30)

- Helium 1.50 MeV
- Lithium 1.00 MeV

Sim:Li

Sim:He
Energy Loss in Gas

Energy loss of conversion ions in ArCO₂(70:30)

- Helium 1.50 MeV
- Lithium 1.00 MeV

Spatial Projection

Sim:Li
Sim:He
Energy Spectrum

Simulation: 1 μm Layer of Boron

Folded with 25 % FWHM
Energy Spectrum

Simulation: 1 μm Layer of Boron

Folded with 25 % FWHM

TOT Spectrum (fiducialized)
Spatial Resolution

Boron Sheet
Spatial Resolution

1 cm
Spatial Resolution

Boron Sheet

1 cm
Spatial Resolution

Edge Projection

\[\chi^2 / \text{ndf} \] 614.6 / 621
Amplitude 40.79 ± 0.29
Width 1.728 ± 0.062

1 cm
Spatial Resolution

Edge Projection

\[\chi^2 / \text{ndf} = 614.6 / 621 \]
Amplitude: \[40.79 \pm 0.29 \] μm
Width: \[1.728 \pm 0.062 \] μm

Spatial Resolution \(\sigma \) (95 +/- 4) μm

@ 315 V – 385 V
High Resolution Neutron Detection
The Neutron Time Projection Chamber
Summary

High Resolution Neutron Detection
The Neutron Time Projection Chamber

- Trigger & Track Principle
Summary

Markus Köhli
Physikalisches Institut (LCTPC)
Rheinische Friedrich-Wilhelms-Universität Bonn

High Resolution Neutron Detection
The Neutron Time Projection Chamber

- Trigger & Track Principle
 - Using both conversion products
High Resolution Neutron Detection
The Neutron Time Projection Chamber

• Trigger & Track Principle
 • Using both conversion products
 • Combination of gaseous tracking detector [TimePix] and a photo sensitive detector [SiPMs]
Summary

High Resolution Neutron Detection
The Neutron Time Projection Chamber

- Trigger & Track Principle
 - Using both conversion products
 - Combination of gaseous tracking detector [TimePix] and a photo sensitive detector [SiPMs]
 - Spatial Resolution σ [$(95 \pm 4) \mu m$]
High Resolution Neutron Detection
The Neutron Time Projection Chamber

- Trigger & Track Principle
 - Using both conversion products
 - Combination of gaseous tracking detector [TimePix] and a photo sensitive detector [SiPMs]
 - Spatial Resolution σ
 - $(95 \pm 4) \mu m$
Summary

High Resolution Neutron Detection
The Neutron Time Projection Chamber

- **Trigger & Track Principle**
 - Using both conversion products
 - Combination of gaseous tracking detector [TimePix] and a photo sensitive detector [SiPMs]

\[
\text{Spatial Resolution } \sigma = (95 \pm 4) \, \mu m
\]
Backup
Detection Efficiency

Simulation of the 2D efficiency with different coating thicknesses

- 5.4 Å
- 3.5 Å
- 1.8 Å
- 1.0 Å

Efficiency % vs. Boron Layer Thickness [µm]

CASCADE 6 layer efficiency
- Simulation 1.0 Å
- Simulation 1.8 Å
- Simulation 3.5 Å
- Simulation 5.4 Å