Coordinated Cosmic-Ray Observation System Conference Lincoln, USA 15.10.2024

Pathways to CRNS: evolving detectors and neutron modeling

Markus Köhli^{1,2}

¹ Physikalisches Institut, Heidelberg University, Germany ² StyX Neutronica GmbH, Mannheim, Germany

Physikalisches Institut Heidelberg University Germany

[1] Image by A. Chantelauze, S. Staffi, and L. Bret, https://www.theverge.com/2017/9/21/16335164/pierre-auger-observatory-cosmic-ray-galaxies-air-shower-particles

1966

[1] Hendrick, L. D. and Edge, R. D., "Cosmic-ray neutrons near the Earth", Phys. Rev. Ser. II, 145 (1966)

[2] Kodama, M. et al., "Application of atmospheric neutrons to soil moisture measurement", Soil Sci., 140 (1985)

[1] Hendrick, L. D. and Edge, R. D., "Cosmic-ray neutrons near the Earth", Phys. Rev. Ser. II, 145 (1966)

[2] Kodama, M. et al., "Application of atmospheric neutrons to soil moisture measurement", Soil Sci., 140 (1985)

[1] W.C. Feldman, et. al "Global Distribution of Neutrons from Mars: Results from Mars Odyssey", Science 297 (5578) (2002), 75-78.

1114455111144455111

[2] http://exploration.esa.int/mars/48523-trace-gas-orbiter-instruments/?fbodylongid=2217

[2] Desilets, D. et al., "Nature's neutron probe: Land surface hydrology at an elusive scale with cosmic rays.", Water Resources Research 46(11) (2010)

Stationary Instruments

Hydroinnova CRS1000

StyX Neutronica SP

StyX Neutronica S1

Physikalisches Institut, Universität Heidelberg

Finapp 3

....

.....

In collaboration with Martin Schrön, UFZ Leipzig

URANOS - The Cosmic Neutron Soil Moisture Si	mulator			
Simulate	Pause Stop Clear #neut maxim	rons: Neutrons: 939100 um:	(537/s) -02:06:02	Refresh status every <u>100</u> neutrons Export
Physical Parameters Computational Parameters	Detector Setup Export	& Display	Live: Birds-eye View	v & Spectra Range View Spatial View
Physical Parameters Computational Parameters Soil Moisture [Vol%] 6 % Air Humidity 7 Atmospheric depth [g/cm²] 1020	Detector Setup Export i Layers Export i Export i I -1000 920 2 -80 30 3 -50 48 4 -2.5 0.5 5 -2 2 6 0 3	& Display Ction, representing different materials or 2D gridded Material Matrix 11 - 11 - 11 + 11 - 11 - 11 - 11 - 11 - 11 - 20 -	d patterns d Minimal Config Layer 2 -	v & Spectra Range View Spatial View
Topological presets (water, land) None River, width [m] Coast at x [m] Jand. diameter [m]		Detecto Ground Mai	or Layer 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-160 -80 0 80 160 240 × [m]
C Lake, diameter [m] 10		Load	d Save	Incoming Spectrum Badscattered Spectrum 10 ⁴ 10 ⁻⁵ 0,0001 0,001 0,01 0,1 1 10 100 1000 Energy [MeV]

» URANOS Buildup

In collaboration with Martin Schrön, UFZ Leipzig

» URANOS Buildup

In collaboration with Martin Schrön, UFZ Leipzig

• written in C++

• linked against ENDF data bases

» URANOS Buildup

In collaboration with Martin Schrön, UFZ Leipzig

interstitutesestitutesestitutesestitutesestitutesestitutesesti

>> URANOS Buildup

In collaboration with Martin Schrön, UFZ Leipzig

topography

.....

line en l'illine en l'illi

Rover

......

.....

.....

Response Functions for Detectors in Cosmic Ray Neutron Sensing

» CRNS timeseries

Physikalisches Institut, Universität Heidelberg

» 2015 WWR paper

@AGUPUBLICATIONS

Water Resources Research

RESEARCH ARTICLE

10.1002/2015WR017169

Footprint characteristics revised for field-scale soil moisture monitoring with cosmic-ray neutrons

M. Köhli and M. Schrön contributed equally to this work.

M. Köhli¹, M. Schrön², M. Zreda³, U. Schmidt¹, P. Dietrich², and S. Zacharias²

Key Points:

Neutron transport modeling revised

¹Physics Institute, Heidelberg University, Heidelberg, Germany, ²Department of Monitoring and Exploration Technologies, UFZ—Helmholtz Centre for Environmental Research, Leipzig, Germany, ³Department of Hydrology and Water Resources, University of Arizona, Tucson, Arizona, USA

 -					
1966	1985	2000	2010	2015	>
		F	Physikalische	s Institut. Universität Heidelberg	Φ

.....

» 2015 WWR paper

» 2021 Intensity Relation

Our proposition: the universal transport solution (UTS)

» CRNS timeseries Stanta Rita

[1] Rosolem, R. et al. "The Effect of Atmospheric Water Vapor on Neutron Count in the Cosmic-Ray Soil Moisture Observing System." J. of Hydrometeorology 14(5) (2013)

and a second second

» CRNS timeseries Stanta Rita

[1] Rosolem, R. et al. "The Effect of Atmospheric Water Vapor on Neutron Count in the Cosmic-Ray Soil Moisture Observing System." J. of Hydrometeorology 14(5) (2013)

.....

» CRNS timeseries Stanta Rita

.....

......

Physikalisches Institut, Universität Heidelberg

Stationary and Roving

In collaboration with Martin Schrön, UFZ Leipzig

200m 1km 400m 600m 800m

Physikalisches Institut, Universität Heidelberg

» Stationary and Roving

In collaboration with Martin Schrön, UFZ Leipzig

.....

.

Stationary Instruments

Stationary - small

Stationary - large

Roving

.....

Type*	Costs**	Abs. Eff.***
³ He	2500€	60 %
¹⁰ BF ₃	1500€	20 %
¹⁰ B ₄ C conv	1000€	12 %

*Proportional counter tubes examples of different sizes to match similar instrument performances. Commercial tubes He: 2" x 12", BF₃: 2" x 30". Conventional sputter-coated B₄C tube 2.3" x 47".

**Costs for a proportional counter, for He mainly the gas filling, for BF₃ (hazardous) 1000 € for the tube, others 300 €.

***thermal neutron absorption efficiency.

Type*	Costs**	Abs. Eff.***
³ He	2500€	60 %
¹⁰ BF ₃	1500€	20 %
¹⁰ B ₄ C conv	1000€	12 %
⁶ LiF printed	700€	12 %
¹⁰ B ₄ C printed	400€	11 %

*Proportional counter tubes examples of different sizes to match similar instrument performances. Commercial tubes He: $2'' \times 12''$, BF₃: $2'' \times 30''$. Conventional sputter-coated B₄C tube 2.3'' × 47''.

**Costs for a proportional counter, for He mainly the gas filling, for BF₃ (hazardous) 1000 € for the tube, others $300 \in$.

***thermal neutron absorption efficiency.

Type*	Costs**	Abs. Eff.***	
³ He	2500€	60 %	
¹⁰ BF ₃	1500€	20 %	
¹⁰ B ₄ C conv	1000€	12 %	
⁶ LiF printed	700€	12 %	
¹⁰ B ₄ C printed	400€	11 %	

*Proportional counter tubes examples of different sizes to match similar instrument performances. Commercial tubes He: 2" x 12", BF₃: 2" x 30". Conventional sputter-coated B₄C tube 2.3" x 47".

**Costs for a proportional counter, for He mainly the gas filling, for BF₃ (hazardous) 1000 € for the tube, others $300 \in$.

***thermal neutron absorption efficiency.

......

......

Laster C. Laster P. C.

.....

.....

.....

- Low temperature dependence
- Display: RL, p, event info
- High resolution for environmental variables
- Battery/voltage monitoring
- Multi-purpose RJ45 Connector
- SD card
- SDI-12 / RS485 implementation

» Data Logger

Real-time data interface

Power Consumption

.....

........

- Low temperature dependence
- Display: RL, p, event info
- High resolution for environmental variables
- Battery/voltage monitoring
- Multi-purpose RJ45 Connector
- SD card
- SDI-12 / RS485 implementation

COSMOS-Europe sites (Bogena 2021, ESSD)

......

.........

....

In collaboration with Patrizia Ney FZ Jülich

.....

In collaboration with Patrizia Ney FZ Jülich

In collaboration with Patrizia Ney FZ Jülich

» Telemetry Integration

» SOMMET: Standardization

........

......

........

.....

.....

.......

.....

» Multiple scales of SOMMET

Comparison and harmonization of soil moisture measurement methods at multiple spatial and temporal scales

- Comparison of methods, their constraints and different spatial and temporal characteristics
 - Development of an approach to harmonize point scale, field scale and remote sensing

» SI-traceable measurements

- Calibration facilities for point scale sensors
 - Primary measurement methods and transfer standards
 - Provide a traceability scheme to CRNS

......

Pathways to CRNS: evolving detectors and neutron modeling

CRNS as an emerging technology platform

Pathways to CRNS: evolving detectors and neutron modeling

CRNS as an emerging technology platform

• Independent modeling and simulation results

CRNS as an emerging technology platform

- Independent modeling and simulation results
- Solutions for detection systems

- Independent, non-invasive sensor operation and low maintenance

Physikalisches Institut Heidelberg University Germany

CRNS as an emerging technology platform

- Independent modeling and simulation results
- Solutions for detection systems

- Independent, non-invasive sensor operation and low maintenance
- Different Networks (COSMOS, UK, EU, Germany) different telemetry solutions (IoT-Integration / LTE / LoRa)

Physikalisches Institut Heidelberg University Germany

CRNS as an emerging technology platform

- Independent modeling and simulation results
- Solutions for detection systems

- Independent, non-invasive sensor operation and low maintenance
- Different Networks (COSMOS, UK, EU, Germany) different telemetry solutions (IoT-Integration / LTE / LoRa)
- SOMMET (PTB): SI-traceable standardization of soil moisture measurements

