

Developing high resolution Time Projection Chambers

a GEM and TimePix approach

May, 9th 2011

Markus Köhli

U. Renz, M. Schumacher

Albert-Ludwigs-Universität Freiburg i. Br.

Supported by

Gas Electron Multiplier

UNIVERSITÄT FREIBURG

Primary Ionization Charge Multiplication → Readout

> [1] STAR TPC http://www.star.bnl.gov/public/tpc/tpc.html [2] Tech-Etch: http://www.tech-etch.com/flex/images/Gem-Foil.jpg [3] IEAF: http://aladdin.utef.cvut.cz/ofat/others/Timepix

UNIVERSITÄT FREIBURG

Technologies [®] concepts

Time Projection Chambers

. Charged particles ionize gas

Primary charge drifts along the electric field E towards the end plates

1

Magnetic field parallel to E reduces transverse diffusion and allows measurement of the particle momentum

Positive Ions distort drift field

At the end plate the primary electrons are multiplied

Readout of the signal

- Projected track (2D plane)
- Time (spacial depth)

UNIVERSITÄT FREIBURG

Principle

charge multiplication in strong electric fields within holes

UNIVERSITÄT FREIBURG

Geometry	• 50 μm thick foil made of Kapton (insulator) coated with copper \cdot conical etched holes with 55 μm diameter
Features	• fields in holes (60-80) kV/cm • effective gas gain O(100)
	 multiple GEM layers necessary for high gain
	 positive ion backdrift to drift volume minimal

[5] Sauli, F. ; Sharma, A.: *Micropattern Gaseous Detectors*. In: Annual Review of Nuclear and Particle Science 49 (1999)

Alternative technologies:

M

MediPix Applications 4

[3]

X-Ray imaging

Picture: frog legs

Picture: NaCl crystal in glas tube

[9]

UNIVERSIT

AT FREIBURG

Neutron tomography

Picture: cartridge

,standard' X-Ray

cold neutron beam, 300 μm Si + ≈80 μm LiF sensor

[8] Bartl, P.; Phasenkontrast-Bildgebung mit photonenzählenden Detektoren, University of Erlangen-Nürnberg, 2010 [9] Jakubek, J. et al.; High Resolution Neutron Tomography with MEDIPIX-2, Czech Technical University, Prague, 2004

MediPix family

Motivation: A modified MediPix 2 chip for TPC applications

knowing the time of arrival of avalanches at pixels

 \longrightarrow use 14bit counter not for counting the #hits, but for counting clock cycles

- (only lower threshold)
- clock up to 100 MHz in each pixel
- threshold (whole chip): \approx 700 e⁻
- 4 different modes possible

modes definable for every pixel using a "map"

UNIVERSITÄT FREIBURG

Pixel operating modes

The TimePix modes

7

signal shape of charge deposition of a pixel

UNIVERSITÄT FREIBURG

[12] Ummenhofer, M.: Inbetriebnahme einer Zeitprojektionskammer mit Pixel-Auslese, University of Bonn, Diploma thesis, 2008

- Triple-GEM-Setup: Gas gain up to 10⁵ in ArCO₂
 - Necessary as charge is spread over several pixels
 - few e⁻ per channel (strong diffusion effects within the GEM-stack)

<u>Consequences</u> \rightarrow high gas gain necessary for detection of *minimal ionizing particles*

→ large number of positive ions created

Event display

Pixel geometries

Motivation: enlarged pixels

- more charge per pixel
 - → higher probability of detection
- less gas amplification needed → fewer positive lons
- optimization of spatial resolution vs. pixel size

2x2

Postprocessed chips (Bonn, IZM)

- 1x1: metalliziation extended from $\approx 20x20 \ \mu\text{m}^2$ to $\approx 50x50 \ \mu\text{m}^2$
- 2x2: 3 of 4 pixels passivated, then metallized pixel size 105x105 μm²
- **2x2**: according to 2x2, no pixel connected
- 3x3: according to 2x2

Tracks in small TPC prototyp

11

AT FREIBURG

UNIVERSIT

[14] Schultens, M.; Teststrahlmessungen mit hochgranularer Auslese einer Zeitprojektionskammer bei verschiedenen Pixelgrößen, Diploma thesis, University of Bonn, 2010

Construction of the test chamber

System requirements

Goals

- modular construction
- non magnetic materials
- gas-tight (several gases)
- DAQ for
 - temperature and pressure

Devices:

- GEM (12x12 cm²) incl.
 - high voltage, 8 potentials
 - variable position (height)
- TimePix
 - simple exchange of chips

Experiments with:

- N₂-laser (UV)
- testbeam
- radioactive source

UNIVERSITÄT FREIBURG

Simulation of the gas flow

Determine

placement of gas in- & outlets
quality of gas flow

- pressure variations
- Procedure use reduced model geometry
 - start with detailed computational mesh (high computing time)
 - reduce number of mesh points as long as results not differ

UNIVERSITÄT FREIBURG

Of materials and sensors

Materials

<u>Structure</u> all non magnetic, non corrosive

<u>Temperature</u> PT1000 resistors, class Y, 4-wire measurement (Prec. 0,1K + 0,0017 · ΔT) 14

Stainless steel 316L (weldable) 304L (cheaper) Aluminim- & brass-alloys (lath work)

<u>Seals</u> EPDM & FKM (not outgassing and inert)

<u>Windows</u> Plexiglas (top cover) Fused Silica (UV Laser)

piezoresistive thinfilm strain gauge sensor + transducer (Prec. 0,18% in 0...1,6 Bar)

UNIVERSITÄT FREIBURG

<u>Charge</u> pA charge amplifiers (2,5-5,5 V/pC)

Pressure

Data Acquisition Agilent 20 channel multiplexer (34970A with 34901A)

Sensors

TimePix & electronics duct

UNIVERSITÄT FREIBURG

pressure sensor

UNIVERSITÄT FREIBURG

Electrical connections

General view and cut view

GEM-stack

readout board

Studies on the performance of enlarged pixels

Pixel calibration

Procedure:

• test pulse at test capacity Ctest (ca. 8 fF) injected charge on pixel

TOT counts depend linearly on the deposited charge

 $TOT = b \cdot Q + a$

Until now: calibration *chipwise* (mean over all pixel)

UNIVERSITÄT FREIBURG

TimePix – slope distribution

Precision of the fit parameters for slopes

$$\frac{\sigma_{\overline{p_1}}}{\overline{p_1}} = (2,13\pm0,12)\,\%$$

Width of overall chip slope distribution

$$\frac{\Gamma_{\overline{S}}}{\overline{S}} = (3,244 \pm 0,007) \%$$

Assuming this chip distribution results from a convolution of ,true' distribution and slope error, the onchip variation is

$$(2,45\pm0,10)\%$$

<u>Slope</u>

×10⁻³

Remarks:

- local variation in slope
- slope not anticorrelated to offset

24

unconnected pixels

UNIVERSITÄT FREIBURG

Conclusions:

- counting e⁻ (slope) not affected
- virtual threshold (offset) of connected pixels higher

---> Passivation affects physical behavior of pixels

Studies on the performance of enlarged pixels

Examples of some records

25

max: 250 ke⁻

max: 200 ke

max: 1100 ke

All examples: clusters of 5,9 keV ⁵⁵Fe decay at ΔV_{GEM} = 385 V

Qualitative illustration

Spectra of TimePix and 1x1

Studies on the performance of enlarged pixels

Comparison of cluster sizes

Kurtosis **Cluster shape** ⁵⁵Fe ArCO₂ 70:30 0 TimePix PP 1x1 Model for electron diffusion **PP 2x2** predicts gaussian shape of **PP 3x3** charge cloud \rightarrow Kurtosis K = 0 -0.5 **Result:** -1 Kurtosis approaches a K < 0 for • larger gas gain larger pixel size -1.5 \rightarrow clusters are more ,centered' -2 350 370 390 340 360 380 ΔV_{GEM} [V] K = -1K = 0

A look at kurtosis

A look at charge per area

Cluster charge

- Postprocessed 1x1 : clusters contain more charge than original TimePix
- Not only area, but also charge / area increases

Conclusion:

Cluster shape is influenced by GEM amplification process itself

32

Passivated pixel cross-talk

Problem of ,cross-talk':

At high amplifications passivated pixels show signals

- \rightarrow charge on connected pixels is reduced
 - \rightarrow avoid high amplifications

clusters of 5,9 keV 55 Fe decay at ΔV_{GEM} = 380 V

33

Clusters: without crosstalk with crosstalk

FREIBURG

UNIVERSI

Studies on the performance of enlarged pixels

Energy resolution

34

UNIVERSITÄT FREIBURG

Gas gain in ArCO₂

Σ.

- Construction of a test chamber:
 - A modular chamber has been developed
 - It features
 - a quick and easy exchange of TimePix chips
 - single potential definition for GEM-layers
 - monitoring of pressure and temperature
 - possibilities for Laser and testbeam measurements, as well as characterization with radioactive sources
- Successful operation of postprocessed chips:
 - 1x1 pixels collect more charge than TimePix original
 - For high amplifications: passivated pixel cross-talk
- GEMs benefit from large pixels:
 - Less gas gain needed
 - Energy resolution improved
 - Spatial resolution only slightly deteriorated

36

AT FREIBURG

Charge per area normalized to TimePix 1x1

M

Single electron detection

Question:

Is it possible to detect single electrons?

Experiment:

A pulsed laser with low intensity generates photoelectrons at the cathode

Expectation:

Number of electrons/shot is Poisson distributed

 $\rightarrow \sigma^2 = \mu$

Result:

For high gas gains a single electron detection could be possible

UNIVERSITÄT FREIBURG

Ratio of clusters with cross-talk vs. average deposited charge

Muros and USB interface

41

2xmean

mean

UNIVERSITÄT FREIBURG

MUROS <u>USB</u> Slope Slope Pixel Bixel Dixel Bixel 200 150 150 100 50 50 100 150 200 250 250 50 100 150 200 Pixel Pixel

USB Interface(1.2.2): calibration with test pulses not possible

1x1 – slope distibution

42

UNIVERSITÄT FREIBURG

Oberserved pixel variations

Spacial distribution of selectable threshold ranges for each pixel (blue = small, red = large) Spacial distribution of signal time delays for each pixel (blue = small, red = large)

UNIVERSITÄT FREIBURG