
Markus Köhli

ANP-Seminar

Developing high resolution Time Projection Chambers 
–

a GEM and TimePix approach

Albert-Ludwigs-Universität 
Freiburg i. Br.

May, 9th 2011

U. Renz, M. SchumacherSupported by



Outlook

[1] STAR TPC http://www.star.bnl.gov/public/tpc/tpc.html
[2] Tech-Etch: http://www.tech-etch.com/flex/images/Gem-Foil.jpg
[3] IEAF: http://aladdin.utef.cvut.cz/ofat/others/Timepix

[1]

[2]

[3]

Time Projection Chamber
Gas Electron Multiplier

TimePix

Primary Ionization Charge Multiplication Readout
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Time Projection Chambers

[4] LCTPC group: http://www.lctpc.org/e8/e57671/

1. Charged particles ionize gas 

2. Primary charge drifts along 
the electric field E towards the 
end plates

Magnetic field  parallel to E 
reduces transverse diffusion  and 
allows measurement of the particle 
momentum

Positive Ions distort drift field

3. At the end plate the primary 
electrons are multiplied

Readout of the signal

- Projected track (2D plane)
- Time (spacial depth)

[4]
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Gas Electron Multipliers

[5] Sauli, F. ; Sharma, A.: Micropattern Gaseous Detectors. In: Annual Review of Nuclear and Particle
Science 49 (1999)

• 50 μm thick foil made of Kapton (insulator) coated with copper
• conical etched holes with 55 μm diameter

• fields in holes (60-80) kV/cm 
• effective gas gain O(100)
• multiple GEM layers necessary for high gain
• positive ion backdrift to drift volume minimal

charge multiplication in strong electric fields within holes

Geometry

Features

Principle

[5]
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[6] Ropelewski, L.: RD51 2009 meeting summary

Micro Pattern Gaseous 
Detectors

Alternative technologies:

[6]
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X-Ray 25 kV, 300 μm Si sensor

‚standard‘ X-Ray

[8] Bartl, P.; Phasenkontrast-Bildgebung mit photonenzählenden Detektoren,  University of Erlangen-Nürnberg, 2010
[9] Jakubek, J. et al.; High Resolution Neutron Tomography with MEDIPIX-2, Czech Technical University, Prague, 2004

MediPix Applications

X-Ray imaging phase contrast imaging

X-Ray 60 kV, 300 μm Si sensor

Neutron 
tomography

(photography)

(photography)

Picture: frog legs

Picture: NaCl crystal in glas tube

Picture: cartridge

cold neutron beam, 
300 μm Si + ≈80 μm LiF sensor

[3]
[8]

[9]
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• active area 1,2 cm²
• matrix of 64 x 64 pixels
• 1,6 M transistors/chip
• 170 x 170 μm² per pixel

• 1 discriminator per pixel
• 15-bit counter
• threshold (whole chip): ≈ 1500 e-

MediPix family

• 1,4 x 1,4 cm²
• matrix of 256 x 256 pixels
• 0.25 μm CMOS technology (33M transistors/chip)
• 55 x 55 μm² per pixel

• serial or parallel I/O (min. readout time of full
matrix 266 μs)

• preamplifier/shaper (trise ≈ 150 ns)
• 2 discriminators (lower and  upper threshold)
• 14-bit counter
• threshold (whole chip): ≈ 1000 e-

1997

2001

MediPix 2

MediPix 1

2006

TimePix

[10] http://medipix.web.cern.ch/medipix/pages/images.php

Concept:

Hybrid-Detector –
readout electronics and
sensor are separated

[10]
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knowing the time of arrival of avalanches at pixels
use 14bit counter not for counting the #hits, but for counting clock cycles

TimePix single pixel with active area (green)

The TimePix chip

• (only lower threshold)
• clock up to 100 MHz in each pixel
• threshold (whole chip): ≈ 700 e-

• 4 different modes possible

modes definable for every pixel
using a “map” 

[11] Llopart, X.: TimePix Manual v1.0, CERN: MediPix2 Collaboration, August 2006

A modified MediPix 2 chip for TPC applicationsMotivation: 

charge sensitive area

[11]
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[12] Ummenhofer, M.: Inbetriebnahme einer Zeitprojektionskammer mit Pixel-Auslese, University 
of Bonn, Diploma thesis, 2008

Pixel operating modes

TPC-Setup:
• use Time-arrival mode
• use TOT for calculating charge

Discriminator signal

Shutter window

Medipix mode

TOT mode

1Hit mode 

TIME mode

signal shape of charge deposition of a pixel

The TimePix modes

[12]
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3-GEM setup

resistive voltage devider:
same potential difference (ΔVGEM) per GEM

GEM + TimePix

• Triple-GEM-Setup: Gas gain up to 105 in ArCO2

• Necessary as charge is spread over several pixels
• few e- per channel (strong diffusion effects within the GEM-stack)

high gas gain necessary for detection of  minimal ionizing particles Consequences

[13] Modified from http://gdd.web.cern.ch/GDD/compass.html

[13]
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large number of positive ions created



Illustrating clusters

Event display

5,9 keV Fe55 clusters
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TimePix
(original)

1x1

2x2

inactive

sensitive area

profile - postprocessed pixel

Motivation: enlarged pixels

• more charge per pixel

higher probability of detection

• less gas amplification needed fewer positive Ions

• optimization of spatial resolution vs. pixel size

1x1 2x2

5,9 keV Fe55 cluster

Pixel geometries

6 µm

[11]
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Postprocessed chips  (Bonn, IZM)

• 1x1: metalliziation extended from 
20x20 µm2 to 50x50 µm2

• 2x2: 3 of 4 pixels passivated, then metallized
pixel size 105x105 µm2

• 2x2: according to 2x2, no pixel connected
• 3x3: according to 2x2



[14] Schultens,  M.; Teststrahlmessungen mit hochgranularer Auslese einer Zeitprojektionskammer 
bei verschiedenen Pixelgrößen, Diploma thesis, University of Bonn, 2010

Charge spreading (Myons 150 GeV)

Tracks in small TPC prototype

tracks recorded on  
Quad-chip board

[14]

[14]
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Chip s0 [µm] Dt [µm/cm]

(1x1) (56.4 ± 0.1) (138.264 ± 0.005)

(2x2) (55 ± 1) (139.0 ± 2)

(4x4) (68 ± 13) (140.0 ± 0.5)

(5x5) (75 ± 9) (146.4 ± 0.6)

only statistical errors

1x1

5x5

TO
T



Construction of the
test chamber

Part II



Goals

• modular construction
• non magnetic materials
• gas-tight (several gases)

• DAQ for
temperature and pressure

Devices:
• GEM (12x12 cm2) incl.

• high voltage, 8 potentials
• variable position (height)

• TimePix
• simple exchange of chips

Experiments with:
• N2-laser (UV)
• testbeam
• radioactive source

System requirements

12



Simulation of the gas flow

Determine • placement of gas in- & outlets
• quality of gas flow
• pressure variations

• use reduced model geometry
• start with detailed computational mesh

(high computing time)

• reduce number of mesh points
as long as results not differ

Procedure
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Structure
all non magnetic, non corrosive

Stainless steel
316L (weldable)

304L (cheaper)

Aluminim- & brass-alloys (lath work)

Seals 
EPDM & FKM (not outgassing and inert)

Windows
Plexiglas (top cover)

Fused Silica (UV Laser)

Materials Sensors

Of materials and sensors

Temperature
PT1000 resistors, class Y, 4-wire measurement
(Prec. 0,1K + 0,0017 ∙ ΔT)

Pressure
piezoresistive thinfilm strain gauge sensor + 
transducer
(Prec. 0,18% in 0…1,6 Bar)

Charge
pA charge amplifiers
( 2,5-5,5 V/pC ) 

Data Acquisition
Agilent 20 channel multiplexer
(34970A with 34901A)
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Body and windows

15

Laser / e--beam 
window

gas inlets

ISO-K 
flange

CF flange

seal



Bottom view
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SHV-connectors (9x)GEM-stack carrier

pressure sensor

TimePix & electronics duct



Lifting table & el. connections
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to charge amplifiers

m
o

ve
-o

u
t

TimePix

TimePix

readout board

adapter boards

bearing

connector for electronics

(upside down view)



Electrical connections
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General view and cut view

red = seals
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source retainer

TimePix

GEM-stack

lifting table

readout board



Studies on the
performance of enlarged pixels

Part III

charge calibration1



• test pulse at test capacity Ctest (ca. 8 fF)

injected charge on pixel

Procedure:

Pixel calibration

TOT counts depend linearly on the
deposited charge

TOT = b · Q + a

Until now: calibration chipwise (mean over all pixel)

but…

[11]
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Would a pixelwise calibration improve the
charge calibration?

(Detail TimePix)

TOT = b · Q + a

…Every pixel has its own response function:

Pixel calibration

Problem:

current in discharging flank varies from pixel to pixel

Llopart , X.; Design and characterization of 64K pixels chips working in single photon processing mode, 2007
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TimePix – slope distribution

defect

Precision of the fit parameters
for slopes

Width of overall chip slope
distribution

Assuming this chip distribution
results from a convolution of ‚true‘ 
distribution and slope error, the on-
chip variation is

22



2x2 - slope & offset 
distribution

defect

Offset

Slope• local variation in slope
• slope not anticorrelated to offset

Remarks:

23



slope offset

2x2 – slope distribution

connected pixels
unconnected pixels

• counting e- (slope) not affected
• virtual threshold (offset) of connected pixels higher

Conclusions:

Passivation affects physical behavior of pixels

24



Studies on the
performance of enlarged pixels

Part III

preparing data2



Examples of some records

original 1x1

2x2
3x3

m
ax: 1

7
0

0
 ke

-

m
ax: 1

1
0

0
 ke

-

m
ax: 2

0
0

 ke
-

m
ax: 2

5
0

 ke
-

All examples: 
clusters of 5,9 keV
55Fe decay at
ΔVGEM = 385 V
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Cleaning the data

multi-clusters

cut by defect row delta-electron
cut by edge of chip

small distance
from edge

x-y axis
correlation > 0 

Types of ‚undesired‘ clusters:

Problem: there are clusters with wrong information for • charge or

• area

cut on these parameters

26



Qualitative illustration

before cuts after cuts

x-y correlation cut

edge cut
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x-y correlation cut edge cut

signal rejection
background rejection

before cuts after cuts

Cuts

x-y correlation cut
edge cut
remaining entries

• define ‚signal region‘
• optimize cuts on

minimal signal rejection
maximum background rejection

Procedure

28



TimePix 1x1 postprocessed

Compare spectra

Spectra of TimePix and 1x1

1x1: • collects more charge
• leads to better separation of energy

better resolution

(same amplification)

29



Studies on the
performance of enlarged pixels

Part III

discussing clusters3



Comparison of cluster sizes

• Postprocessed 1x1 : 
clusters are larger than original
TimePix

first visible clusters

• For enlarged pixels

About cluster sizes

more charge per pixel

clusters with less gas gain detectable

…but why is cluster size constantly
increasing?

30



A look at kurtosis

Cluster shape

Model for electron diffusion
predicts gaussian shape of
charge cloud

Kurtosis K = 0

Result:

Kurtosis approaches a K < 0 for
• larger gas gain
• larger pixel size

clusters are more ‚centered‘

K =  0
K = -1
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A look at charge per area

Cluster charge

• Postprocessed 1x1 : 
clusters contain more charge
than original TimePix

x 3
x 5

• Not only area, but also 
charge / area increases

Conclusion:

Cluster shape is influenced by
GEM amplification process itself

Bn
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Passivated pixel cross-talk

Clusters:
without crosstalk
with crosstalk

clusters of 5,9 keV
55Fe decay at
ΔVGEM = 380 V

Problem of ‚cross-talk‘:

At high amplifications passivated pixels show signals

charge on connected pixels is reduced

‚cross-talking‘ is a function field strenght as well as of deposited charge

avoid high amplifications

33

ΔVGEM = 360 V ΔVGEM = 365 V



Studies on the
performance of enlarged pixels

Part III

general features4



Energy resolution

Result:
• Pixel enlargement improves

energy resolution

Best (3x3):
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Gas gain in ArCO2

Expected number of primary
electrons from 5,9 keV in 
ArCO2(70:30): 212

Studies on gas gain

Results:

• gas gains up to 3·105 could be achieved
• with pixel enlargement less potential
difference / gas gain needed for same
charge per pixel
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Summary

Σ
36

• Construction of a test chamber: 

– A modular chamber has been developed

– It features 

 a quick and easy exchange of TimePix chips

 single potential definition for GEM-layers

 monitoring of pressure and temperature

 possibilities for Laser and testbeam measurements, 
as well as characterization with radioactive sources

• Successful operation of postprocessed chips:

– 1x1 pixels collect more charge than TimePix original

– For high amplifications: passivated pixel cross-talk

• GEMs benefit from large pixels:

– Less gas gain needed

– Energy resolution improved

– Spatial resolution only slightly deteriorated



Backup



Charge per area

Charge per area normalized to TimePix 1x1
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Single electron detection

Experiment:

A pulsed laser with low intensity generates
photoelectrons at the cathode

Number of electrons/shot is Poisson distributed

Expectation:

Question:

Is it possible to detect single electrons?

σ2 = μ

σ2 = μ

Result:

For high gas gains a single electron detection
could be possible
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Passivated pixel cross-talk

Ratio of clusters with cross-talk vs. average deposited charge

39



In laboratory
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USB Interface(1.2.2): calibration with test pulses not possible

MUROS USB

Muros and USB interface
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slope slope error

offset offset error

1x1 – slope distibution
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Spacial distribution of selectable threshold ranges
for each pixel (blue = small, red = large)

Spacial distribution of signal time delays for each
pixel (blue = small, red = large)

Oberserved pixel variations

[11]
[12]
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