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1 Introduction
The mass m is closely related to the energy E via the famous relationship

E = mc2 .

This relationship can be used to convert mass measurements to energy measurements.
For example, the mass difference between the mother nucleus and daughter nucleus in a
radioactive decay is equivalent to the decay energy. Measuring such energies is important in
many areas of physics:

Astrophysics: One of the “11 Science Questions for the New Century” that were formulated
by the NRC in 2002 was: “How were the elements from iron to uranium made?” Mass
spectrometry provides key parameters (e.g. neutron separation energies) for building models
that explain how nuclei are formed in supernovas and stars.
Nuclear physics: The measurement of nuclear masses helps to improve mass models. The
masses of radioactive nuclei are of particular interest. One goal is to find the “island of
stability”, which is predicted by many different models of nuclear masses.
Tests of QED: Measuring the binding energy of the 1s-electron in hydrogen-like uranium
(U91+ allows to test QED in strong fields1. The ionization energy of U91+ from the ground
state is approximately 200 keV and far out of the reach of laser spectroscopy. High precision
mass measurements allow to measure this energy.
Neutrino physics: The determination of the neutrino mass is an active research field
in particle physics and astrophysics. A precise measurement would yield an important
parameter in theories beyond the Standard Model of physics. The neutrino mass is also
needed for estimating the energy that is required for neutrino production during the big bang.
Penning traps can help to measure this value by determining β-decay energies. The difference
between the total energy of a β-decay and the maximum energy that the β-electrons can
have (provided by a separate measurement) is equal to the mass energy of the ν̄e- neutrino.

Penning-traps are useful tools in mass spectrometry, but they can also be used to measure
other properties of charged particles, such as magnetic moments or electric dipole moments.

Table 1.1: Applications of mass spectrometry and relative mass uncertainty that is needed
[Blaum, 2006].

Field Rel. mass uncert.
Chemistry: identification of molecules 10−5 − 10−6

Nuclear physics: shells, sub-shells, pairing 10−6

Nuclear fine structure: deformation, halos 10−7 − 10−8

Astrophysics: r-process, rp-process, waiting points 10−7

Nuclear mass models and formulas: IMME 10−7 − 10−8

Weak Interaction studies: CVC hypothesis, CKM unitarity 10−8

Atomic physics: binding energies, QED 10−9 − 10−11

Metrology: fundamental constants, CPT < 10−10

1The electric field near the uranium nucleus is one of the strongest available electrostatic fields (cf. Schwinger
limit).

3



2 Theory1

2.1 Cyclotron motion
When a particle with mass m and charge q moves through a magnetic field B⃗, it experiences
the Lorentzian force

F⃗L = q v⃗ × B⃗ .

In the special case v⃗ ⊥ B⃗, the particle’s trajectory will be a circle (Fig. 2.1, left). In the
more general case, v⃗ has a component parallel to the magnetic field, and the trajectory is a
spiral. By setting F⃗L equal to the centripetal force, you can quickly show that the frequency
of the circular motion is independent of the velocity:

ωc = q

m
B . (2.1)

This frequency is called the free cyclotron frequency. The basis of Penning-trap mass
spectrometry is to determine the cyclotron frequencies of two different particles in the same
magnetic field B⃗. When the ratio of these frequencies is calculated, the magnetic field cancels
out and the charge ratio reduces to an integer fraction. The frequency measurement can
therefore be used to calculate a mass ratio:

ωc1

ωc2

= q1
q2

m2
m1

. (2.2)

By using one particle with a well-known or defined mass, such as a 12C+ ion, the mass of
the other particle can be determined.

State-of-the-art superconducting magnets can be carefully tuned to have a magnetic field
that changes only 1 part in 108 over a 1 cm3 region in the center. When a charged particle
is inserted into such a field, it orbits around the field lines (in other words, it is trapped
radially), but it is free to drift axially, along the field lines, out of the homogeneous part of
the magnetic field. This considerably reduces the useful time in which the particle can be
studied or in which its cyclotron frequency can be determined.

The idea of a Penning trap is to have a weak, electric field that axially pushes the particles
towards a defined point. But before describing this field, let us consider the motion of
particles in strong B⃗-fields with simultaneous, weak E⃗-fields.

2.2 Guiding center motion
If in addition to the magnetic field B⃗ there is a weak2 electric field E⃗, the trajectory of
charged particles can be separated into a fast cyclotron motion, caused by B⃗, and a slow
drift of the center of the cyclotron motion, caused by E⃗. The center of the cyclotron motion
is also called the guiding center.

For example: If E⃗ ∥ B⃗, the radial motion is undisturbed, and the particle is accelerated
axially, along the field lines. The trajectory is a spiral that has more and more space between
its loops (Fig. 2.1, center).

1Parts of this chapter are based on the doctoral thesis by Martin Höcker.
2Weak meaning that the electric forces are much smaller than the magnetic forces.
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Figure 2.1: Motion of a charged particle in a magnetic field (left), in magnetic field parallel
to an electric field (center), and a magnetic field orthogonal to an electric field
(right).

When E⃗ ⊥ B⃗, the particle accelerates and decelerates as it moves on its cyclotron orbit.
The radius of the orbit grows as the particle moves in the direction of E⃗ and shrinks again
during the other half of the orbit. This causes the center of the cyclotron motion to drift
sideways, orthogonal to both the electric and the magnetic field (Fig. 2.1, right). This drift
is called the E-cross-B drift.

The general case can be described by a superposition of E⃗∥ and E⃗⊥.
We now have the tools to describe the motion of charged particles in a Penning trap.

2.3 Penning trap motion
This section gives a qualitative description of the motion. For a more rigorous quantitative
treatment, see Sec. 2.5.

By convention, the magnetic field points towards the z-direction, so that B⃗ = Be⃗z. The
electric field that leads to something called Penning trap can then be written as

E⃗ = c

x/2
y/2
−z

 , (2.3)

with some arbitrary constant c (Fig. 2.2). The important part is happening in the Ez-
component: Assuming the signs of c and charge q are the same, the electric field pushes
the particles towards z = 0. Since this force is proportional to the z-displacement, like in a
spring, the z-motion is a harmonic oscillation (Fig. 2.3) with the axial frequency ωz.

�B

z

x

Figure 2.2: Cut-view of the electric field inside a Penning trap.

5



The field in the xy-plane (the “radial” plane) is a necessary trade-off, as dictated by
Gauss’s law: The field lines that are coming in towards the trap center in the z-direction,
need to come out somehow. In an ideal Penning trap, the radial components of the E⃗-field
point evenly away from the trap center.

The radial components of E⃗ pull the particles away from the trap center. As they accelerate
outwards, their cyclotron orbit increases. When the cyclotron motion takes the particles
back towards the trap center, their cyclotron orbit decreases. In total, the center of the
cyclotron motion (the guiding center) performs a slow E-cross-B-drift around the center of
the trap (Fig. 2.3). In Penning trap terms, this slow drift is called the magnetron motion
and behaves like a harmonic oscillator with the so-called magnetron frequency ω−.

The drift of the guiding center slightly reduces the frequency of the fast cyclotron motion,
see Sec. 2.5. This other motion in the radial plane moves with a frequency ω+, called the
modified cyclotron frequency.

It is important to point out that the magnetron motion is unstable3! The particles sit on
a potential hill in the radial plane. If there are any damping processes, such as collisions
with background gas, the particles roll down the potential hill and are lost. In cryogenic
traps that are cooled to 4 K, particles can easily be stored for years and longer [Blaum et al.,
2009], but in the room-temperature Penning-trap of this experiment, the storage times are
on the order of 100 ms.

2.4 Penning trap electrodes
The electric field E⃗ of a perfect Penning trap corresponds to the potential

Φ = c

2

(
−ρ2

2 + z2
)

, (2.4)

where ρ2 = x2 + y2. To create this potential inside the Penning trap, there are three
cylindrically symmetric electrodes that follow the equipotential lines of Φ: Two electrodes

3It can be argued that the term Penning “trap” is a misnomer, but “Penning arbitrarily long storage device”
does not have the same ring to it.

z

x

y ω−

ω+

ωz

�B

Figure 2.3: Motion of a positively charged particle in a Penning trap. The motion consists of
the slow magnetron drift around the trap center ω− (blue), the axial motion ωz

(red), and the modified cyclotron motion ω+ (yellow). The superposition of all
three motions is shown in purple.
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Figure 2.4: Hyperbolic Penning trap electrodes.

follow the contours

z(ρ) = ±
√

z2
0 + ρ2

2 , (2.5)

with z0 as the closest point to the trap center.
These electrodes are called the endcaps (Fig. 2.4). Both endcaps are held at the same

potential. The third electrode, called the ring electrode, follows the contour:

ρ(z) = ±
√

ρ2
0 + 2z2 , (2.6)

with ρ0 being the distance between trap center and ring electrode.
Let V0 be the voltage between the ring electrode and the endcaps. Then the potential in

the trap can be written as:

Φ(ρ, z) = V0

z2
0 + 1

2 ρ2
0

(
z2 − 1

2ρ2
)

this trap= V0
2z2

0

(
z2 − 1

2ρ2
)

(2.7)

2.5 Penning trap frequencies
To quantify our qualitative understanding of the Penning trap trajectories, we have to solve
the equations of motion

¨⃗r = q

m

(
˙⃗r × B⃗ + E⃗

)
. (2.8)

With B⃗ = Be⃗z and Equation 2.7 for the potential Φ(ρ, z) that defines the electric field
E⃗ = −∇⃗Φ, we can rewrite this asẍ

ÿ
z̈

 = q

m
B

 ẏ
−ẋ

0

 + qV0
2mz2

0

 x
y

−2z

 (2.9)

The z-component of this differential equation is independent of the radial components, and it
has the same structure as the equation of an undamped, harmonic oscillator. It is solved by

z(t) = ẑ0eiωzt with ωz =
√

qV0
mz2

0
. (2.10)
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The frequency ωz is called the axial frequency. Using the above definition for ωz and
Equation 2.1 for ωc, the radial equations of motion can be written as(

ẍ
ÿ

)
= ωc

(
ẏ

−ẋ

)
+ 1

2ω2
z

(
x
y

)
. (2.11)

These equations can be solved by introducing the function u(t) = x(t) + iy(t). With the help
of this function, the radial equations of motion can be reformulated as

ü = −iωcu̇ + 1
2ω2

zu . (2.12)

Guessing a solution of the form u(t) = u0e−iωt leads to two independent solutions with the
frequencies

ω± = 1
2

(
ωc ±

√
ω2

c − 2ω2
z

)
. (2.13)

The frequency ω+ is the faster frequency. This frequency is often called the modified
cyclotron frequency, because for typical trap parameters, it is only slightly smaller than
the free space cyclotron frequency ωc. The other frequency, ω−, is called the magnetron
frequency.

In order for the trajectory to be stable, the frequencies must be real-valued. This is only
the case if ω2

c > 2ω2
z . This requirement is equivalent to

B >

√
2m

q

V0
z2

0
. (2.14)

In other words, if the voltage between the trap electrodes is too big, then the electric forces
become too large and the ions are no longer contained radially by the magnetic field. This is
called the stability limit.

In typical Penning traps, ω− ≪ ωz ≪ ω+ < ωc [Blaum, 2006]. The magnetron frequency
ω− may become larger than ωz, but this is only true if the trap is operated dangerously close
to the stability limit.

The fact that the motion of particles in a Penning trap can be broken down into three
independent, harmonic modes is very important from a practical standpoint: It ensures that
the frequencies can be measured separately and that the measurements do not depend on
difficult-to-control initial conditions.

The free space cyclotron frequency ωc can easily be calculated from the trap eigenfrequencies
ω+, ω−, and ωz. There are two ways to do it: Either by using the sideband relation

ωc = ω+ + ω− (2.15)

or by using the invariance-relation [Brown and Gabrielse, 1982], which is independent
against trap imperfections

ω2
c = ω2

+ + ω2
− + ω2

z . (2.16)

These relationships can easily be verified using the results of Equation 2.13 and Equa-
tion 2.10. In ideal Penning traps, they give identical results.

One further relationship is quite useful when calculating one frequency from two measured
frequencies:

ω+ω− = 1
2ω2

z . (2.17)

It follows directly from Equation 2.13.
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2.6 Real Penning traps
In a real Penning trap, the convenient separation of the particle motion into three independent,
harmonic modes is not strictly true. Imperfections lead to frequency offsets, to energy
dependent frequency shifts (each frequency depends on the energies of all modes) and to
coupling (energy exchange) between the modes. Relevant imperfections are:

• Particle interactions. If there is more than one charged particle in the Penning trap,
particle interactions lead to chaotic frequency shifts and couplings. High precision
Penning traps are designed to work with single ions, or with at most two ions in the
trap. The interactions in the electron cloud of the FP-experiment are the biggest
limitation of this device.

• Misalignment between B⃗ and E⃗. This can happen when the trap electrodes are tilted
with respect to the magnet. In Penning traps used for mass spectrometry, typical
frequency shifts are on a 10−7-level, but it can be shown that this shift cancels out
when using Equation 2.16 to calculate ωc.

• Ellipticity of the E⃗ field, where the radial components of E⃗ are stronger in one direction
than the other. This affects measurements on a 10−10-level.

• Cylindrically symmetric E⃗-field imperfections. When, for example, Ez is not perfectly
proportional to z but additionally also depends on z3, then the trapped particles’
z-oscillation has the characteristics of a “stiffening” (or “weakening”, depending on the
sign) spring, and the axial frequency changes as a function of amplitude. Relevant on
a 10−8-level

• Cylindrically symmetric B⃗-field imperfections. They lead to similar effects as the
E⃗-field imperfections, but are typically relevant on a 10−10-level.

• Relativistic shifts. These are especially important for light particles. For light ions, the
reduced cyclotron frequencies are typically shifted on a 10−10-level

• Image charges in the trap electrodes. Image charges always pull the charged particles
to the closest electrode, away from the trap center. This modifies the equations of
motions and is relevant on a 10−10-level.

Most of these frequency shifts are energy dependent. Current research in Penning-trap
mass spectrometry pushes for lower motional amplitudes (lower ion energy), smaller trap
imperfections, and better characterization of the remaining shifts.

The Penning trap used in this experiment consists of a stack of five cylindrical electrodes,
which reproduces a symmetric and nearly perfect quadrupole-like potential [Gabrielse et al.,
1989] which can be expanded as

Φ(z, ρ) = VR

(
C2z2 + C4z4 + C6z6 + ...

)
− 1

2ρ2 this trap
≃ VRC2

(
z2 − 1

2ρ2
)

. (2.18)

By tuning the correction electrodes with respect to the ring electrode (see Fig. 2.5), the
higher order corrections C4 and C6 can be set to zero.

Questions:

• What is a Penning trap, what does it look like? What fields are present?

• What is the free cyclotron frequency and how is it derived (formulae)?

• What are the eigenmotions of a trapped particle in a Penning trap (names, type of
movement, not exact formulae) and what important parameters do they depend on?
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Figure 2.5: Cylindrical Penning trap electrodes, CAD model.

Figure 2.6: Cylindrical Penning trap electrodes, real setup.
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3 Detection and Manipulation

3.1 Detecting electrons
When an electron sits motionless inside the trap, electrostatic induction causes image charges
to form on the trap electrodes. When the electron moves, the image charges move as well.
This change in charge is per definition a current I = dQ/dt and is referred to as image
current. The oscillating movement of the electrons in the trap therefore cause an AC-signal.
The radial motion of trapped electrons leads to an image current that mostly flows in the
ring electrode. Since the ring electrode is rotationally symmetric, this current can flow freely
and does not lead to a measurable voltage drop across the ring electrode. On the other hand,
the image current of the axial motion mostly flows between the endcaps, and depending on
the connection (impedance) between the endcaps, causes a voltage that can be measured.

The image current is low (I ∼ 10−12A), and according to Ohm’s law,

V = ZI , (3.1)

we need a high impedance (|Z| ∼ 106Ω) for a measurable voltage drop (V ∼ 10−6V ). To
achieve this we could connect a 1MΩ resistor between the endcaps and then measure the
voltage drop across the resistor. However, the traps have a self-capacitance Ceff of several pF,
which is electrically parallel to the resistor we would connect. Therefore connecting a resistor
would actually decrease Z, since it will be connected in parallel.

At (for electrons) typical axial frequencies of a few tens of MHz, the overall impedance is
dominated by Ceff, and is only a few kΩ. (Try to verify this.)

Figure 3.1: (Left) The axial ion movement induces image currents which are picked up by a
RLC-circuit. The ion can be modelled as inductance and capacitance in parallel
to the RLC-circuit. (Right) On resonance, the ion is detected on the resonator
as dip signal. The coil is excited through a small capacitance Ctiny. When the
ring voltage is carefully adjusted so that ωz = ωRLC , then the electrons short
out the excitation signal [Ulmer et al., 2016].

We can solve the problem by connecting an inductor Lres across the endcaps (Fig. 3.1).
The self-capacitance of the trap Ceff, the inductor Lres, and the resistive losses RP of the
inductor form an RLC-circuit. You can show that the impedance is maximal, and real, at a
frequency of ωRLC ≈ 1√

LresCeff
(Fig. 3.2).
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The z-oscillation of the trapped particles acts as a current source parallel to the trap
capacitance Ceff. If the particles oscillate with ωz near ωRLC, their image current causes a
measurable voltage drop across the coil. As a side effect, the voltage drop also back-acts
on the moving charges and damps their motion, until they are in thermal equilibrium with
the RLC-circuit. When new electrons are loaded into the experiment, they start out hot
and therefore appear as a peak on top of the frequency spectrum of the detection circuit.
However, they quickly cool down and the peak disappears.

Therefore, we use a different method in order to detect them (see Fig. 3.1).
We use a device that sends sinusoidal signals of different frequencies through the circuit

and measures the amplitudes of the returned waves after they went around in the circuit
(called network analyzer).

Just like how the motion of the trapped electrons create an induced current at the circuit,
current running through the circuit applies forces on the trapped electrons. We set the
electron’s axial oscillation frequency ωz to be the same as the resonance frequency of the
circuit ωRLC (try to think how we can do that). We then send signals of different frequencies
through the circuit.

Most of these signals will apply forces which are non-resonant with the electron’s axial
motion. Therefore they will not excite the electrons much. (Also, these signals will mostly
decay in the circuit anyhow except if they are resonant with the detection circuit).

Frequency in kHz
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Figure 3.2: The impedance of a parallel RLC circuit for R=200kohm, L=79uH and C=22pF
as a function of the angular frequency.

However, if we send a signal with the same frequency as the other two (so that ωsignal =
ωz = ωRLC), much of its amplitude will be spent on exciting the motion of the electrons,
and the returned signal will be low in amplitude. We will then see a dip in the spectrum for
this frequency. This is how we can see that we have electrons in the trap - By measuring a
dip in the spectrum.

By the way, if the axial frequency is not close enough to the circuit’s resonance frequency,
the impedance will have a non-negligible imaginary component and as a result instead of a
dip we will get a peak and then a dip (a dispersion curve). (see Fig. 3.1)

An alternative explanation:

When the resonance frequency of the electrons, the resonance frequency of the circuit,
and the frequency of the signal we send through the circuit are all identical, a significant

12



image current flows through the electrons across the endcaps. This image current provides
an additional path for the signal to flow, and it typically has a much lower impedance than
the RLC circuit. The electron cloud then acts as a short and the voltage drop on the RLC
circuit is reduced, producing a dip.

Note that the device sending the signals throughout the circuit is not connected directly,
rather it is connected to the circuit through a capacitor with very small capacitance (1 pF).
The capacitor is there to allow a voltage difference between the signal generating device
and the circuit, otherwise the signal generating device would continuously force the circuit’s
voltage to follow the generated signal.

3.2 Driving and Coupling the Modes
An electric field (or any vector field) can be described by:

E⃗ = Ex,1

1
0
0

 + Ey,1

0
1
0

 + Ez,1

0
0
1

 + Ex,x

x
0
0

 + Ey,y

0
y
0

 + Ez,z

0
0
z



+Ex,y

y
0
0

 + Ey,x

0
x
0

 + Ex,z

z
0
0

 + Ez,x

0
0
x

 + Ey,z

0
z
0

 + Ez,y

0
0
y



+many non-linear terms, such as Ex,x2

x2

0
0

 , Ez,x19 =

 0
0

x19

 , ...

Where Ewhatever are constants determining how strongly each term contributes.
Another way of writing this would be:

E⃗ =

non coupling terms︷ ︸︸ ︷Ex,1 + Ex,xx + Ex,x2x2 + ...
Ey,1 + Ey,yy + Ey,y2y2 + ...
Ez,1 + Ez,zz + Ez,z2z2 + ...

 +

linear coupling terms︷ ︸︸ ︷Ex,yy + Ex,zz
Ey,xx + Ey,zz
Ez,xx + Ez,yy


+

Ex,y2y2 + ... + Ex,z2z2 + ...
Ey,x2x2 + ... + Ey,z2z2 + ...
Ez,x2x2 + ... + Ez,y2y2 + ...


︸ ︷︷ ︸

non-linear coupling terms and other scary terms

(3.2)

For strongly homogenous electric fields, only the first few elements are non-zero. For less
homogenous fields, more terms are non-zero. The more in-homogenous a field is, the more
terms we need to describe it.
In our experiment we have a split correction electrode. On this electrode, dipole fields with
different frequencies can be applied. However, the fields are not perfectly dipole-like and also
contain many non-linear terms.
If the signal we send to the split electrode is oscillating with frequency ωexcitation, it makes
each component of the field oscillate by making its coefficient time-dependent:

Ewhatever → Ewhatever · cos (ωexcitationt)). (3.3)

Note that, while the coefficients have different amplitudes and spatial dependencies, their
time dependency is the same. (They all oscillate with the same frequency and phase.)
The split electrode has two uses, driving the modes and coupling them.
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3.2.1 Driving the Modes
The split electrode can be used to resonantly drive (energize) the modes (mode referring to
+, − and z). The electric field that the split electrode creates contains linear non-coupling

terms - for instance Ez,1 cos (ωexcitationt)

0
0
1

.

When we send a signal with frequency ωexcitation = ωz we will get a forced and damped
harmonic oscillator equation for the z direction (see Sec. 5.1). The amplitude of the motion
will increase due to the driving force. There are two damping effects which limit the amplitude
of the electrons:

1. As the amplitude of the motion increases, the effects of the anharmonic imperfections
of the trap become more significant, the effective frequency changes, the force goes out
of resonance and the electrons are no longer driven by a driving force.

2. As the electrons move, they create induced currents in the circuit, which decay over
time due to resistive losses. These image currents create a voltage difference across the
endcaps which is out of the phase with the electron’s motion and so counteracts it.

Note that integer multiples of ωexcitation = nωz (where n is an integer) will also drive the
oscillator.
Driving the z motion is useful because it increases the effects of the electrons on the circuit
until their radius of motion becomes so large that they are lost from the trap. The loss of
electron signal therefore indicates, that the excitation frequency ωexcitation equals the axial
frequency ωz. Equivalently, the non-coupling terms Ex,1 and Ey,1 can be used to drive and
detect the magnetron ω− and modified cyclotron frequency ω+.

3.2.2 Coupling the Modes
The non-coupling terms are named as such because if our field is only composed of such
terms and we write down the differential equations of motion (F = ma ⇒ qE⃗ = m⃗̈r) we will
get three independent differential equations - the equation for the motion in the x axis will
only be dependent on the x coordinate, and so on for y and z. There will be no mixing - no
coupling.
(In our specific case there is of course the coupling of the x and y axes caused by the magnetic
field, even without introducing additional coupling terms by using the split electrode.)
The coupling terms mess things up by making coordinates appear in equations of motion
other than their own (for instance, we might have x or higher powers of x appear in the
equation for the y axis, and so on). This couples the equations together and changes the
modes of motion.
The effects are complicated, but practically the result is that there will be energy transfer
between the modes (like two pendulums connected with a spring, resulting in an energy
transfer between the modes). This energy transfer will be negligible (inefficient) for most
excitation frequencies that we will choose and then the coupling terms will have no practical
effect (like a very small spring constant in the earlier analogy).
However, a calculation reveals that specific excitation frequencies will create efficient energy
transfer. It shows that if we choose the excitation frequency to be an integer multiple of
either the sum or a difference of the frequencies of the two involved modes, efficient energy
transfer will occur. Such sums or differences are called sidebands.
As an example, a field component of the form:

E⃗couple ∝

z
0
x

 cos(ωexcitationt + ϕ) (3.4)
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can be used to couple (create energy transfer between) the axial and the radial modes (either
z and - or z and +), by selecting either ωexcitation = ωz ± ω− or ωexcitation = ω+ ± ωz,
respectively. And a field component of the form:

E⃗couple ∝

y
x
0

 cos(ωexcitationt + ϕ) (3.5)

can be used to couple (create energy transfer between) the + and - modes, by selecting
ωexcitation = ω+ ± ω−.

The calculation shows that there are two types of efficient energy transfer - Rabi oscillations
and exponential increase.

Rabi oscillations refer to a state where the amplitudes of the two modes change periodically,
with a 90 degrees phase difference between them. For example, when coupling the z and the
- modes with Rabi oscillations, the amplitude of the z motion will increase while that of the -
motion will decrease, until the amplitude of the z motion will start decreasing back, at which
point the amplitude of the - motion will start increasing back, and so on. If the amplitude is
great enough this can cause the electrons to hit the trap electrodes and escape the trap.

Exponential increase is the state where both amplitudes increase exponentially. For example,
when coupling the z and the - modes with exponential increase, the amplitude of each will
increase exponentially. This will make the electrons hit the trap electrodes and escape it.

It follows from the calculation that for every pair of efficiently energy transferring frequencies,
one of them will cause Rabi oscillations and the other will cause an exponential increase. For
instance, ωexcitation = ωz + ω− will cause Rabi oscillations while ωexcitation = ωz − ω−
will cause exponential increase.

Coupling the motions is useful because we can use it to measure the frequencies of the motion
(ωc,z,±) by using the following method:

We can observe our electrons detection signal while exciting the split electrode with different
frequencies. The electrons detection signal will remain roughly constant for most choices of
the excitation frequency (because most excitation frequencies will create inefficient energy
transfer and no electrons will be lost), however for certain frequencies it will drop significantly
(because these excitation frequencies will cause efficient energy transfer which will make at
least one of the modes grow so large the electrons will hit the trap).
We can write down these frequencies, and, knowing that these frequencies are actually integer
multiples of sums or differences of the frequencies of motion, we can extract the frequencies
of motion from them.
To be able to do this we need to know which pair of frequencies of a given excitation frequency
is a sum or a difference. (For instance, given that a certain frequency we found makes the
electrons detection signal drop, we still don’t know whether its fz − f−, or maybe fz + f+
and so on).
We can identify the pair by repeating the measurement with different ring voltages or coil
currents. Different frequencies of motion have different dependencies on the ring voltage and
the coil current, and so by observing whether and how a given excitation frequency shifted
as a result of changing either the ring voltage or the coil current (or both), we can tell which
frequencies of motion it is comprised of. In addition, we can calculate the frequencies to get
an idea in which frequency range to look for them: fz − f− for example will be much smaller
than fz + f+.

Go back to the theory section, look at the formulas for the different frequencies and try
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to determine which parameters one needs to modify to cause them to shift, and in which
direction.

The calculation that these results are based on is available at the appendix (see chapter 5).
You are not expected to know it by heart or to be able to reproduce it, but you should know
the basic idea of how it goes.

Questions:

• What particles are we going to measure?

• How do charged particles get lost from containment?

• How does the detection system work, how do you measure the eigenfrequencies, what
signal lineshape do you expect to get for trapped particles?

• Assuming that we continuously excite (give energy to) the axial mode, what happens
when we efficiently couple it to another mode? Which frequencies do we expect to
create efficient coupling?
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4 Experiment
This chapter describes the experimental setup, the measurement control and the data analysis
[Paasche, P. et al., 2002]. You will learn how to use professional measurement equipment,
how to control experimental routines by software and about experimental techniques used in
high-precision mass spectrometry.

4.1 Overview of the experimental setup
The Penning trap electrodes are mounted inside a vacuum chamber (10−8 mbar or better),
pumped by a turbopump which is backed by a scroll pump. A cylindrical coil wrapped around
the outside of the vacuum chamber generates the magnetic field. Electrical feedthroughs
connect the electrodes inside the vacuum to the measurement electronics on the outside. The
timing sequences are controlled by an Arduino single-board microcontroller, and data is read
out by a PC.
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Figure 4.1: Overview of the experimental setup.

4.1.1 Mechanical setup
Connected to the ports of the CF63 cross are a viewport, a pressure gauge, the pumps and
the vacuum tube that houses the Penning trap. Through the viewport, you can see the trap
electrodes and the electron gun.

The Penning trap consists of five cylindrically shaped electrodes that are insulated from
each other (Fig. 2.5).Next to the upper endcap1 is the electron gun. The electrons are
produced by thermal emission: A tungsten filament is heated by an electrical current running
through it. When this filament is set to a negative voltage, electrons are repulsed from the
filament through a grounded aperture plate (a plate with a hole in the middle) towards the
trap.

1The trap is mounted horizontally, but by convention, the endcap closer to the viewport is called “bottom
endcap”.
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The electrons can enter the trap region through the hole in the anode (Fig. 2.5). These
primary electrons cannot be trapped, since their energy is too high. Instead, secondary
electrons, which are produced by collisions of the primary electrons with the residual gas,
are trapped. During a measurement sequence with electrons in the trap, loading of further
electrons is suppressed by switching the filament to ground potential. The lower the amplitude
of the detecting dip signal, the more electrons we have in the trap. (We will learn how to do
this in the next section).

4.1.2 Measurement electronics
Fig. 4.2 provides an overview over the Penning trap and the measurement electronics.

The magnetic field is generated by running a current of several 100 mA through a cylindrical
coil. The current is controlled by a programmable power supply that can apply currents of
up to ≈ 1.3 A through the coil’s resistance of ≈ 50 Ω.

The electrostatic trapping field is generated by applying a positive voltage to the ring
electrode while the two endcaps are grounded DC-wise. A positive voltage is also applied to
the correction electrodes, while AC signals are sent through the split correction electrode
to excite the axial motion of the electrons. The ring electrode voltage is generated by a
precision voltage source, which can be programmed or changed manually. To ramp the ring
voltage (such that the signal decreases from the set voltage to 0V where all electrons are lost
from the trap) an RC low-pass is added in series to the voltage source. We ramp the ring
voltage in order to detect the electrons (Sec. 3.1). (How does scanning the ring voltage help
us to detect the electrons? Hint: Which parameter depends on the ring voltage and what
happens when it reaches a certain special value?).

The radio-frequency excitation signal for the ωexcitation is generated by a HP8657 signal
generator. In order to apply the excitation during a well-defined period, the generator is
not directly connected to the split electrode, but through a radio-frequency switch instead.
The switch is closed for 0 and open for 5V, as in, if the voltage at the control port of the
switch is 0 V, the RF generator signal goes into a 50 Ω resistor and nothing special happens,
and if its 5 V, the RF generator signal goes to the split electrode. Thus, the excitation time
and period can be defined by the length of the trigger pulse applied to the control port of
the radio-frequency switch. In the measurement, you therefore need to plug in an excitation
time in the code.

The current used to heat the filament for extracting electrons is provided by one of the
4 channels of the Hameg power supply. This channel “floats”, meaning that neither the
positive nor negative side of the channel are connected directly to ground. This allows the
channel to be floated upwards or downwards (it can be “biased”) by another, non-floating
channel of the power supply. This filament bias voltage is applied through a fast HV-switch,
which switches between the negative bias voltage and ground.

The coil and the low-noise amplifier of the axial-frequency detection system are enclosed
in a metal box that is mounted on the outside of the vacuum system, onto the feedthrough
flange. The supply voltages for the amplifier are provided by a 3-channel Hameg power
supply.

The detection system, trap and cables form an RLC-circuit. It is connected to the DSA
815 network analyzer (spectrum analyzer) which excites it (and so the axial frequency of
the electrons) when in Tracking Generator (TG) mode. The resulting voltage signal is
amplified by a low-noise amplifier and given back to the DSA815 as input. The trigger
signals for the measurement sequence (loading the trap with ions, exciting them with the split
electrode, and sweeping the ring voltage to detect them) are generated by an Arduino-based
trigger generator. An oscilloscope is used to visualize the trigger signals of the measurement
sequence.
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Figure 4.2: Overview of the measurement electronics.

4.1.3 Measurement control
The experimental setup is controlled by a computer. You will receive a folder containing
ready-made functions for controlling the setup, as well as an example file for setting up a
basic measurement, which you will need to modify and expand. The scripts will save data
into text files which can be viewed using Scilab (see shortcut on the desktop).

The trapped electrons only remain trapped for a few 100ms, and are lost after they’re
measured (some are lost by the measurement process, which involves exciting them to the
point where they are lost from the trap, and the rest are then lost due to the scanning of the
ring voltage. When it is negative, all electrons are expelled from the trap). Therefore, in
order to perform multiple measurements we need to continuously perform a cycle of loading
new electrons, exciting them, detecting them and expelling them from the trap.

The measurement scheme thus consists out of following steps (see Fig. 4.3):

1. Loading the trap (tload, typ. 25 ms)

2. Waiting for voltages to stabilize (twait1, typ. 25ms)

3. Exciting the electrons with ωexcitation (texc, typ. 50 ms)

4. Additional waiting time (twait2, typ. 25 ms)

5. “Counting”/Detection of the electrons (tdet, typ. 30 ms)

6. Expelling all electrons. This happens at the end of tdet.

Loading the trap: During the loading time the filament is switched to a negative bias
voltage, as described in Sec. 4.1.1. The HV-switch used for switching the bias voltage can be
controlled by a TTL (5V) signal, which is generated by the trigger generator.
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Excitation of the Electrons: As described in Sec. 4.1.2, ωexcitation is not directly applied
to the split electrode, but is instead connected to the input of an RF switch, which has its
output connected to the split electrode. The switch is open (allows the signal to pass through
the switch to the split electrode) when it gets 5V and is closed when it gets 0V. It can be
controlled with a TTL signal, which is generated by the trigger generator.

Counting/Detection of the Electrons: As explained in Sec. 3.1, the electrons can be
detected by scanning over different values of the ring voltage. The electrons’ axial frequency
depends on the ring voltage, so by scanning over the ring voltage we scan over the electrons’
axial frequency.

When the electrons’ axial frequency equals the RLC circuit’s resonance frequency, the
electrons short out the excitation signal, reducing its amplitude and signaling that we have
electrons in the trap.

Just like how the trapped electrons create an induced signal in the circuit, so will an
excitation signal running through the circuit apply induced forces on the trapped electrons.
The effect of the excitation signal on the electrons will be insignificant unless its frequency is
the same as the electron’s resonance frequency, in which case it will give them energy, and
lose energy itself due to conservation of energy.

The lower the amplitude, the more electrons we have in the trap. (We will learn how to do
this in the next section) The ring voltage is ramped to a negative value, so that all electrons
are expelled from the trap, and is then set back to a positive value, to prepare for the next
measurement cycle.

4.2 Tasks
We will measure the different frequencies (reduced cyclotron, axial and magnetron, different
sidebands) as a function of the coil current and the ring voltage and use the resulting graphs
to measure different system parameters (go over the equations in the theory section and try
to think which parameters can be extracted from such graphs). We will also measure the
lifetime of electrons in the trap. Next, a detailed description of the measurement steps will
be given. Keep in mind that original ideas are not only permitted, but encouraged.

4.2.1 Preparation
• The number of windings and the length of the coil are N = (2400 ± 30) and L =

(246.0 ± 0.5)mm, respectively. Assuming a long solenoid, calculate the magnetic flux
density B as a function of the coil current I.

• To get a feeling for the motional frequencies, calculate the free cyclotron frequency
νc of an electron for a magnetic flux density of the previously calculated coil for a
current of I = 1.3A. You can look up the mass and charge of an electron for example
on CODATA.

• Calculate the axial νz, magnetron ν− and reduced cyclotron frequency ν+ for the
previously calculated B-field, V0 = 40V and C2 = 1.4 · 104m−2. You can extract the
C2 coefficient by comparing Equation 2.7 and 2.18.

4.2.2 Identifying the Components
Before we start the measurements, get more familiar with the experimental setup by iden-
tifying the different devices shown in Fig. 4.2. Follow the cables and see what connects
to what and try to understand what each device does. Please don’t plug/unplug any
cables or change the values of the power supplies manually. This can mess up
the experiment and even destroy certain components. It’s okay to change the coil
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Table 4.1: Typical values and maximum-/minimum-ratings.

VALUE DEVICE TYP MIN MAX UNIT

Pressure MaxiGauge 1.2 · 10−8 1 · 10−7 mbar

Coil Current 3CH Hameg 1.3 −1.3 1.3 A

Filament Current 4CH Hameg 0.42 0.45 A

Filament Bias 4CH Hameg −10 −30 0 V

nuexcitation power HP8657A 5 −15 15 dBm

fdet power DSA815 −30 −10 dBm

Ring Voltage SRS DC205 30 0 100 V

RF Switch DC+ 4CH Hameg 5 5 5 V

RF Switch DC− 4CH Hameg −5 −5 −5 V

Amplifier Supply 3CH Hameg 3.4 3.4 3.4 V

Amplifier Gate 1 3CH Hameg −0.84 −1.5 0 V

Amplifier Gate 2 3CH Hameg −0.34 −1.5 0 V

current remotely, using the computer. The devices you can manually operate are the Network
Analyzer, the oscilloscope, the ring voltage and the HP8657A excitation power source. Feel
free to play with them and fully explore their functionalities. Push lots of buttons, it’s fun.
Make yourself familiar with the minimum/maximum ratings given in Tab. 4.1.

A general note (relevant to all steps, not only this one): When the trap is not in use, the
coil current should be 0.05A (arbitrary low value to prevent it from heating up significantly).
Therefore, at the end of each day in the lab before going home, if you’re not
performing a measurement, set the coil current to 0.05A, and if you are, make
sure there is a line of code to change the coil current to 0.05A at the very end of
your file, so that the coil can cool down after your script finishes running.

4.2.3 Finding the detection system resonance frequencies
Determine the resonance frequency of the axial resonator with the spectrum analyzer (DSA
815, from now on: SA). If we knew the capacitance and the inductance, we could have
calculated it outright (what is the formula for the resonance frequency of an RLC-circuit?),
however, we don’t. Therefore, play with the settings of the SA (frequency range, scale,
trigger mode, . . . ) to find the resonance. The resonator coil is not shielded, therefore several
resonances exist due to parasitic effects. Choose the resonance with the largest amplitude in
the range of 1 MHz -100 MHz. You can zoom in to the plot by adapting the frequency range
and center frequency. Use the marker for a better determination of the resonance frequency
νres and note down its value. Make sure, the Tracking Generator (TG) is turned on. In
this mode, the SA plots the same graph as before, but instead of relying on the input pulse
alone in order to measure it, it sends pulses of its own with different frequencies (to the
RLC-circuit) and measures the amplitudes of the returned pulses. (Why does this make the
graph less noisy? See section 3.1 if you are not sure anymore.)
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4.2.4 Detecting the electrons
Next, we will detect the electrons that are in the trap. Therefore, enter the resonance
frequency you found in the previous step in the script Test.py and run the script (this can
be done by opening the file with IDLE and pressing F5). The script activates the zero-span
mode in the SA, such that the amplitude of the signal at a given frequency is displayed as
function of time. By synchronizing the scan of the SA with the scanning of the ring voltage,
the horizontal axis is effectively turned from time to ring voltage. You might not see a good
signal yet. Check the settings of your SA (this can be done by going back to local control
ESC → AMPL → Auto Scale) and adapt the reference level in the script if necessary. Also
play with the wait time/detect time and the ring voltage if you don’t see a dip-signal (Hint:
if there is no dip-signal, there might not be electrons in the trap. How do electrons get lost
from the trap?).

Once you have a dip-signal, optimize the depth of the dip by varying the center frequency
and the ring voltage. From experience we know that the dip-depth and therefore the signal
amplitude is higher on the left flank of the resonance. If the signal is still to weak for a
proper measurement, ask your tutor so you can try to optimize the settings together.

4.2.5 Electron lifetime measurement
The signal amplitude/ dip-depth is a measure for the number of electrons in the trap, which
drops exponentially with time. Open the Lifetime.py script and adjust the times, coil
current, ring voltage etc. Without any RF-excitations, vary the waiting time between loading
and detection and take a measurement series for waiting time vs. signal amplitude (don’t
turn the RF-signal generator off, you can just turn off the output).

4.2.6 Manual search for electron eigenfrequencies
Go back to the Test.py script. Use the RF-excitation to manually search for the axial,
magnetron and modified cyclotron frequency. Remember that you can calculate all frequencies
to know in which range to look for them. If the excitation frequency matches a motional
eigenfrequency, the electrons are ejected from the trap before the detection takes place and
the dip vanishes. Write down a few frequencies which strongly affect the SA signal and don’t
forget to note down other important parameters like the coil current or the ring voltage.

Can you also discover sidebands (ν+ ± ν− etc.)? Can you discover multiples of an
eigenfrequency? Note: these trapping, excitation and measuring cycles are continuously
happening, also while you are reading this. Look around and try to verify it by looking at
the relevant instrument.

Optional: Find the phase space for trapping (all possible combinations of ring voltage
and coil current, that enable trapping).

4.2.7 Long-term measurement
Prepare a long-term measurement, which consists of three sets of measurements over a larger
frequency range of 0MHz-500MHz (you can modify this range if you wish, as long as it stays
reasonable). Vary the excitation amplitudes, trap voltages and coil currents, respectively,
while leaving the two remaining parameters fixed. Use the MeasurementScript.py, adjust
the important parameters as previously and write your code in the indicated region at the
bottom of the script. Check with one of the frequencies you found in Sec. 4.2.6, that your
script is working as it should. You can read out the data using the check_data.py script, it
should look somewhat like Fig. 4.4. This measurement will take a few days to complete and
you will get the data once it’s finished. Make sure the measurement will be finished
before the weekend and remember to set the coil current back to 0.05A at the
end of your measurement. You can test this for example by running your code over a
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smaller frequency range with fewer steps and for only one set of parameters while stopping
the time, and then extrapolate the time the whole measurement will take.

4.3 Data Analysis
1. Try to identify the different lines from the long-term measurement. Use a symmetric

function (e.g. a gaussian, lorentzian or voigt) to fit ν+,νz, ν−, ν++ν− and prepare a table
containing all frequencies with estimated errors from the fits and their corresponding
coil current, ring voltage and excitation amplitude. Remember that you can calculate
the eigenfrequencies to get a feeling for where to look for them (or sidebands) in the
plot.

2. Calculate the free cyclotron frequency from the sideband relation and using the invari-
ance theorem. Do these values agree with each other? Do these values agree with the
directly measured free cyclotron frequency ν+ + ν−? If this is not the case, what are
possible reasons for the discrepancy? Extract the magnetic flux density from your data.
Does it agree with your previous estimation?

3. Plot the axial frequencies as a function of the ring voltage and make a fit to determine
the C2-coefficient (don’t forget the error). Do you see the expected behavior?

4. Plot the free cyclotron frequencies (from the invariance theorem) as a function of the
coil current. Do you see the expected behavior? Assuming that the length of the coil L
is correct, determine the number of windings N.

5. Now turn the line of reasoning around. Assume that the coil parameters N, L are
correct and extract the charge-to-mass ratio of the electron. Give a value for the
electron mass by utilizing the CODATA value of the elementary charge.

6. Extract the decay constant / lifetime from the lifetime measurement: Assuming a
linear dependence between dip-depth and electron number, fit an appropriate function
to the data. You can use the Lifetime_Analysis.py script.
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5 Appendix - Coupling the Modes
In this chapter we will go through the mathematical derivation for mode coupling in more
detail (see Sec. 3.2.2). We will show that:

1. Efficient energy transfer between two modes occurs when the split electrode excitation
frequency is chosen to be an integer multiple of a sum or a difference of the frequencies
of the two coupled modes.

2. For every such pair (sum and difference) of frequencies, one will cause Rabi oscillations
and the other will cause exponential increase.

The calculation is not rigorous but should still be somewhat convincing.

5.1 Forced Harmonic Oscillator
First we will need to prove that for a 1D forced harmonic oscillator, a driving force oscillating
at the resonance frequency of the oscillator Fdrive ∝ cos (ω0t) will inspire a motion with the
same frequency but with a 90 degrees phase lag: x ∝ t cos

(
ω0t − π

2
)

= t sin (ω0t):
The equation for a 1D forced harmonic oscillator is:

Fspring + Fdrive = mẍ

More explicitly,

−ω2
0x + A cos (ω0t) = ẍ , with ω2

0 ≡ f

m
.

Pick ωdrive = ω0.
Guess x = Bt sin (ω0t).
Derivations yield:

ẋ = B sin (ω0t) + Btω0 cos (ω0t)

ẍ = 2Bω0 cos (ω0t) − Btω2
0 sin (ω0t)

Substitution in the equation of motion yields:

−ω2
0Bt sin (ω0t) + A cos (ω0t) = 2Bω0 cos (ω0t) − Btω2

0 sin (ω0t)

B = A
2ω0

And so the solution is x = A
2ω0

t sin (ω0t).
Conclusion: For a forced harmonic oscillator, the motion lags 90 degrees behind the force.
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5.2 Coupling z and +

Lets examine the effects of a force of the form F ∝

z
0
x

 cos (ωRFt) with initial conditions of

zero amplitude for the x motion - x = 0, and non-zero amplitude for the z motion, which is
oscillating at its resonance frequency - z (t) ∝ cos (ωzt + ϕz).
We will first pick ωRF = ω+ − ωz.
The driving force on the x axis is then: Fx ∝ cos (ωzt + ϕz) cos (ωRFt)
Using the following trigonometric identity:

cos (a) cos (b) = 1
2 cos (a + b) + 1

2 cos (a − b)

We get Fx ∝ cos ((2ωz − ω+) t + ϕz) + cos (ω+t + ϕz)
The first term is non-resonant and will have no significant effect. Neglecting it, we end
up with an equation for a forced harmonic oscillator. The driving force has phase ϕz, so
the movement it will inspire will lag 90 degrees behind it and have a phase of ϕz − π

2 :
x ∝ cos

(
ω+t + ϕz − π

2
)

The x amplitude will therefore start to grow. The driving force on the z axis will then be:
Fz ∝ cos

(
ω+t + ϕz − π

2
)
cos (ωRFt)

Fz ∝ cos
(
ωzt + ϕz − π

2
)

+ cos
(
(2ω+ − ωz) t + ϕz − π

2
)

Once again we will neglect the first term because it is non-resonant, and once again we get a
forced harmonic oscillator. The driving force has a phase of ϕz − π

2 , and so the movement it
will inspire will be z ∝ cos (ωzt + ϕz − π). This motion is at 180 degrees to the original z
motion and so the z amplitude will decrease. We see that the x amplitude increases and the
z amplitude decreases.
Eventually the z amplitude will be 0 and the x amplitude will be at its maximal value. At
this point theres no driving force on the x motion anymore (because the z amplitude is 0),
but the z amplitude is still decreasing because the x amplitude is still positive. As a result
the z amplitude will become negative, the driving force in the x axis will switch sign and the
x amplitude will start to decrease.
So now the x amplitude decreases and the z amplitude increases (in absolute values). This
will go on until the z amplitude is at its maximal value and the x amplitude is 0. Following
the same logic, the x amplitude will then become negative, the driving force in the z axis
will become negative and the process will repeat itself.

Conclusion: ωRF = ωz − ω+ causes Rabi oscillations.

Lets now explore the other option of picking ωRF = ωz + ω+.
The driving force on the x axis: ωRF = ωz + ω+
F ∝ cos ((2ωz + ω+) t + ϕz) + cos (ω+t − ϕz)
dropping the first term we are left with a forced harmonic oscillator. The driving force
has a phase of −ϕz and so the inspired movement will have a phase of −ϕz − π

2 : x ∝
cos

(
ω+t − ϕz − π

2
)

The motion in the x direction will start to grow.
The driving force on the z axis:

Fz ∝ cos
(

ω+t − ϕz − π

2

)
cos (ωRFt)

Fz ∝ cos
(
(2ω+ + ωz) t − ϕz − π

2
)

+ cos
(
ωzt + ϕz + π

2
)

dropping the first term we are left
with a forced harmonic oscillator. The driving force has a phase of +ϕz + π

2 and the inspired
movement has a phase of ϕz: z ∝ cos (ωzt + ϕz).
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This motion is in phase with the original motion and so the z amplitude will increase. Both
the x and the z amplitudes will increase.

Conclusion: ωRF = ωz + ω+ causes exponential increase.

5.3 Other Couplings
The same logic holds for the other couplings, with the difference that, the - motion is caused
by the E⃗ × B⃗ drift, not by a returning force of the form F⃗ = −kx⃗, and a calculation shows
that such a force inspires a motion which is at 90 degrees ahead of the force, not behind.
The result is that the roles are reversed: ωz + ω− causes Rabi oscillations while ωz − ω−
causes exponential increase.
Similarly ω+ + ω− causes Rabi oscillations while ω+ − ω− causes exponential increase.

5.4 Trap cabling and detection images
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Figure 5.1: Trap cabling setup.
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