L49a Pegelconverter

Anwendung: Umsetzung von schnellen, logischen NIM-Signalen in TTL-komplatible

Signale und umgekehrt.

Zahl der Kanäle: 4 NIM > TTL Kanäle

4 TTL > NIM Kanäle

TTL-Eingänge: Impedanz $2,5k\Omega$

log.0 = 0...0,8Vlog.1 = 2,4...5V

minimale Pulsbreite 5nsec.

 $\underline{\text{Diodenschutz}}$ für \boldsymbol{U} EINGANG \leq -0,7V

und **U** EINGANG ≥ 5,8V

Offene Eingänge liegen auf log.1!

NIM-Eingänge: Impedanz 50Ω

log.0 = 0...-0,2V

log.1 = -0.6...-1V (typ. -0.8V) oder -12...-20mA (typ.-16mA)

minimale Pulsbreite 8nsec.

Diodenschutz für **U** EINGANG $\geq 0.7V$

und **U** EINGANG ≤ -1,2V

Offene Eingänge liegen auf log.0!

TTL-Ausgänge: Je ein Ausgang pro Kanal, aktive Ausgangsstufe, belastbar mit 50Ω nach

Masse oder mit 50Ω nach +2,4V.

log.0 = typ. 0.4V

 $log.1 = typ. 2,5V an 50\Omega$; typ. 3,5V im Leerlauf

Schaltzeiten von 0,8V auf 2V typ. 2,5nsec.

von 2V auf 0,8V typ. 1,5nsec.

NIM-Ausgänge: Je eine Stromquelle mit -16mA und das Komplementärsignal pro Kanal

log.0 = 0mA

log.1 = -16mA; max. -20mA

erforderlicher Abschlußwiderstand 50Ω

Schaltzeiten typ. 2,5nsec.

im NIM > TTL Zweig: typ. 8nsec. im TTL > NIM Zweig: typ. 6nsec. Signalverzögerung:

im TTL - NIM Zweig \geq 100MHz im NIM - TTL Zweig \geq 65MHz Wiederholfrequenz:

1/12NIM-Kassette, Lemo-Buchsen RA00 250 Aufbau:

Gesamtstromaufnahme: +6V 300mA

-6V 420mA