IV. Weak interaction

- 1. Phenomenology of weak decays
- 2. Parity violation and neutrino helicity
- 3. V-A theory
- 4. Neutral currents

The weak interaction was and is a topic with a lot of surprises:

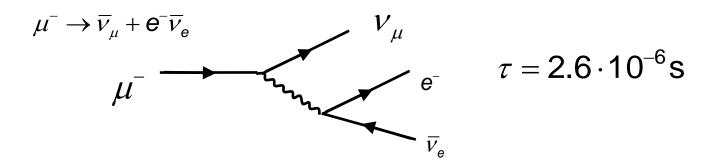
Past: Flavor violation, P and CP violation.

Today: Weak decays used as probes for new physics

1. Phenomenology of weak decays

All particles (except photons and gluons) participate in the weak interaction. At small q² weak interaction can be shadowed by strong and electro-magnetic effects.

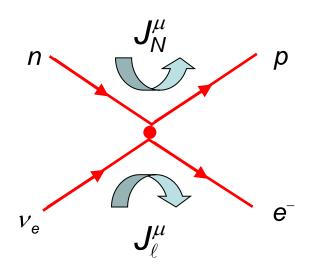
 Observation of weak effects only possible if strong/electro-magnetic processes are forbidden by conservation laws:



Electromagnetic decay $\mu^- \rightarrow e^- \gamma$ forbidden by lepton number conservation

1.1 Weak interaction and nuclear β -Decay: $n \rightarrow p e^- \overline{\nu}_{\alpha}$

Fermi's explanation (1933/34) of the nuclear β -decay:



Two fermionic vector currents coupled by a weak **coupling const.** at single point (4-fermion interact.)

Apply "Feynman Rules"

$$M = \frac{G_F}{\sqrt{2}} \cdot J_{N,\mu} \cdot J_e^{\mu^+} = \frac{G_F}{\sqrt{2}} \cdot \left(\overline{u}_p \gamma_\mu u_n\right) \cdot \left(\overline{u}_e \gamma_\mu v_v\right)$$

Fermi coupling constant, dimension = $(1/M)^2$

Coupling of the currents described by coupling constant G_F – a very small number ~10⁻⁵ GeV⁻². Explains the "weakness" of the force.

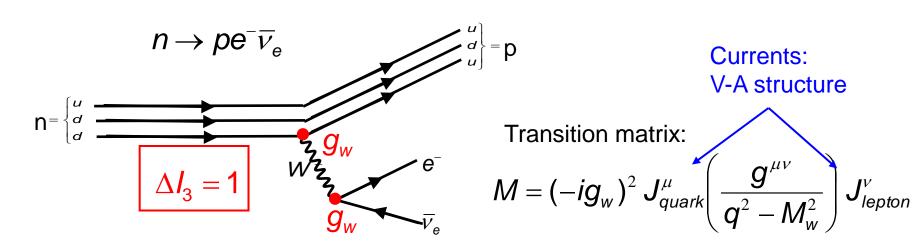
Fermi's ansatz was inspired by the structure of the electromagnetic interaction and the fact that there is essentially no energy dependence observed.

Problem: Ansatz cannot explain parity violation (was no a problem in 1933) 3

Today's picture of the β -decay

- Nucleons are composed of quarks, which are the fundamental fermions. The quarks couple to the fundamental forces.
- The weak interaction is mediated by a massive vector field (gauge boson, W). Coupling constant g_w.

Using the "quark level" decay one can describe weak hadron decays (treating the quarks which are not weakly interacting as spectators)



Strong isospin I₃ not conserved.

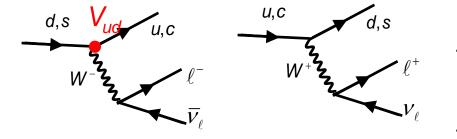
"weakness" result of (1/M_w)² suppression

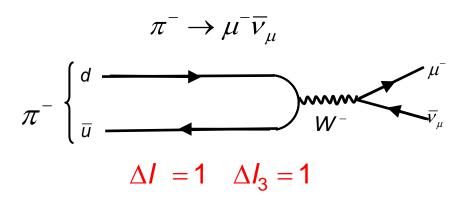
1.2 Weak hadronic decays

a) Dominant decay modes

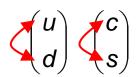
$$d \to u \ell^{-} \overline{\nu}_{\ell} \qquad u \to d \ell^{+} \nu_{\ell}$$

$$s \to c \ell^{-} \overline{\nu}_{\ell} \qquad c \to s \ell^{+} \nu_{\ell}$$





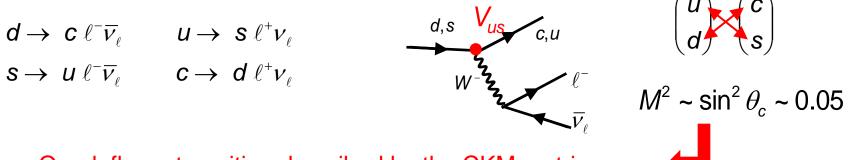
If q^2 is large enough the W can also decay to (u, \bar{d}) or (\bar{u} d) quark pairs



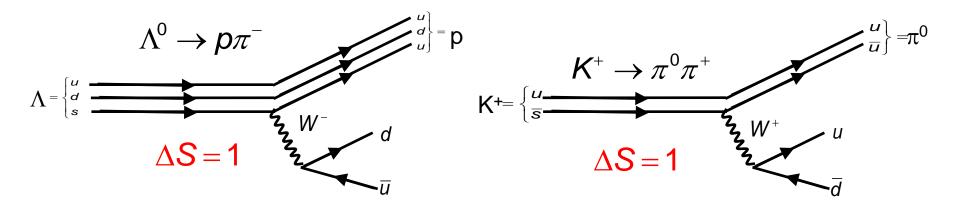
Historically
$$M^2 \sim \cos^2 \theta_c \sim 0.95$$

Cabibbo angle: $\theta_c \approx 0.22$

b) suppressed decay modes

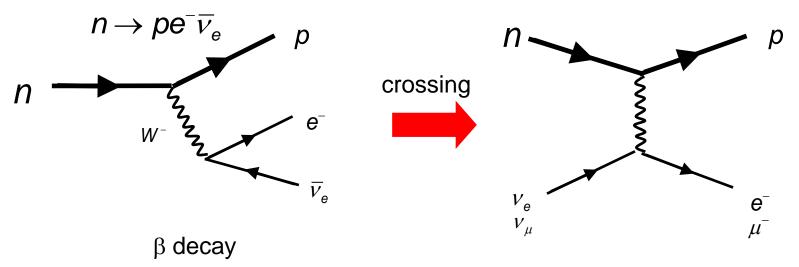


Quark flavor transition described by the CKM matrix.



Weak interaction does not conserve strong isospin, strangeness or other quark flavor numbers. Lepton number is conserved.

1.3 Neutrino interactions



Neutrino-nucleon scattering

Very small cross section for vN scattering: $\sigma(vN) \approx E_v[GeV]x10^{-38} cm^2$ $\approx E_v[GeV]x10 fb$

- intense neutrino beams
- large instrumented targets

2. Parity violation

 $x'^{\mu} = \Lambda_{P \ \nu}^{\ \mu} \ x^{\nu}$

Parity transformations (P) = space inversion

 $\Lambda_P = \left(\begin{array}{ccc} 1 & & & \\ & -1 & & \\ & & -1 & \\ & & & -1 \end{array} \right)$

P transformation properties: $P: \vec{r} \rightarrow -\vec{r}$

 $P: \qquad \vec{r} \to -\vec{r}$ $t \to t$ $\vec{p} \to -\vec{p}$ $\vec{\ell} = \vec{r} \times \vec{r}$

 $\vec{\ell} = \vec{r} \times \vec{p} \rightarrow \vec{\ell}$ Axial/pseudo vector

e.g.: Helicity operator

$$H = \frac{\vec{s} \cdot \vec{p}}{|\vec{p}|} \xrightarrow{P} - \frac{\vec{s} \cdot \vec{p}}{|\vec{p}|} \text{ (pseudo-scalar)}$$

$$P \xrightarrow{H=+1/2} \qquad H=-1/2$$

Experimentally:

- mirroring at plane + rotation around axis perpendicular to plane
- ⇒ To test parity it is sufficient to study the process in the "mirrored system": physics invariant under rotation

2.1 Historical θ/τ puzzle (1956)

Until 1956 parity conservation as well as T and C symmetry was a "dogma":

→ very little experimental tests done

In 1956 Lee and Yang proposed parity violation in weak processes.

Historical names

Starting point: Observation of two particles θ^+ and τ^+ with exactly equal mass, charge and strangeness **but** with different parity:

$$\theta^{+} \to \pi^{+} \pi^{0} \quad \text{W/} \quad P(\theta^{+}) = P(\pi)^{2} (-1)^{\ell} \to J^{P}(\theta^{+}) = 0^{+} \quad P(\pi) = -1$$

$$\tau^{+} \to \pi^{+} \pi^{+} \pi^{-} \quad P(\tau^{+}) = P(\pi)^{3} (-1)^{2\ell} \to J^{P}(\tau^{+}) = 0^{-}, 2^{-}$$

Lee + Yang: θ^+ and τ^+ same particle, but decay violates parity

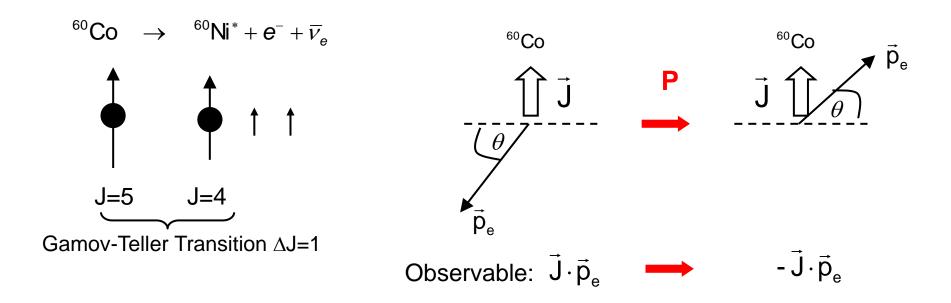
⇒ particle is K+:

$$K^{+}(0^{-}) \rightarrow \pi^{+}\pi^{0}$$
 P is violated $K^{+}(0^{-}) \rightarrow \pi^{+}\pi^{+}\pi^{-}$ P is conserved

To search for possible P violation, a number of experimental tests of parity conservation in weak decays has been proposed:

2.2 Observation of parity violation, C.S. Wu et al. 1957

Idea: Measurement of the angular distribution of the emitted e⁻ in the decay of polarized ⁶⁰Co nuclei



If P is conserved, the angular distribution must be symmetric in θ (symmetric to dashed line): transition rates for $\vec{J} \cdot \vec{p}_e$ and $-\vec{J} \cdot \vec{p}_e$ are identical.

Experiment: Invert Co polarization and compare the rates at the same position θ .

NaJ detector to measure e rate

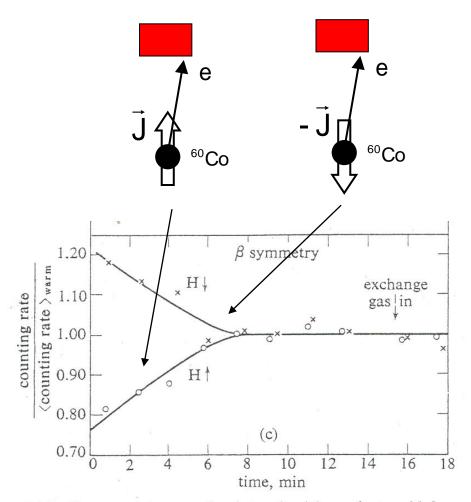


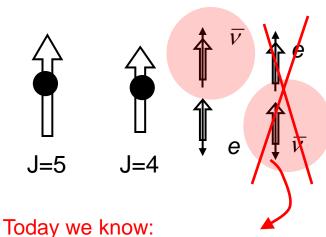
Figure 9-12 Gamma anisotropy (as determined from the two NaI counters) and beta asymmetry for the polarizing field pointing up and down as a function of time. The times for disappearance of the beta and gamma asymmetry coincide; this is the warm-up time. The warm-up time for the sample is approximately 6 min and the counting rates for the warm unpolarized sample are independent of the field direction. [From C. S. Wu, E. Ambler, R. W. Hayward, D. D. Hoppes, and R. P. Hudson, *Phys. Rev.*, 105, 1413 (1957).]

Result:

Electron rate opposite to Co polarization is higher than along the ⁶⁰Co polarization:

parity violation

Qualitative explanation:



Consequence of existence of only left-handed (LH) neutrinos (RH anti-neutrinos)

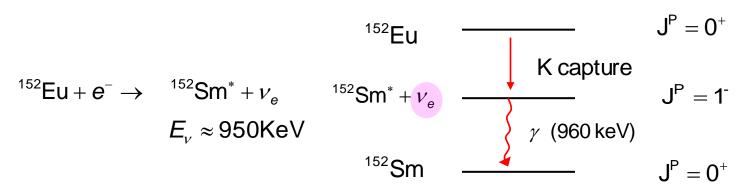
Electron polarization in β decays

$$H_{e^{-}} = -\frac{1}{2} \frac{V}{C}$$

2.3 Determination of the neutrino helicity

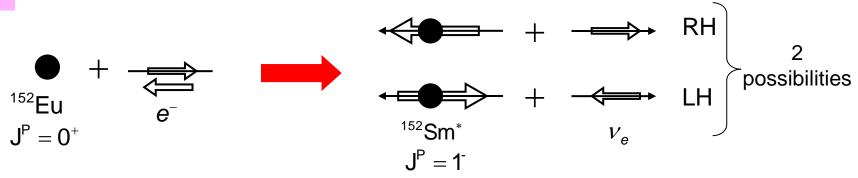
Goldhaber et al., 1958

Indirect measurement of the neutrino helicity in a K capture reaction:



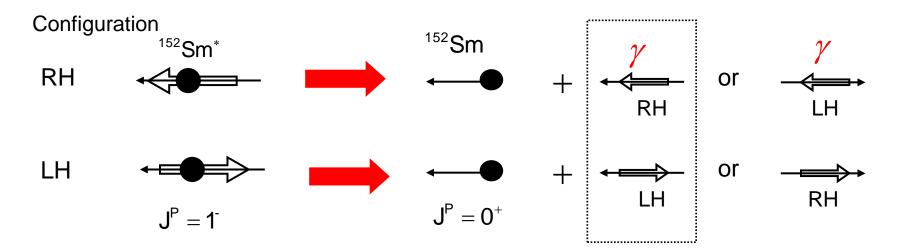
Idea of the experiment:

1. Electron capture and v emission



Sm undergoes a small **recoil** (p_{recoil} =950 KeV). Because of angular momentum conservation Spin J=1 of Sm^{*} is opposite to neutrino spin. Important: **neutrino helicity is transferred to the Sm nucleous.**

2. γ emission: $^{152}\text{Sm}^*(J^P = 1^-) \rightarrow ^{152}\text{Sm}(J^P = 0^+) + \gamma$



Photons along the Sm recoil direction carry the polarization of the Sm* nucleus

- How to select photons along the recoil direction ? ⇒ 3
- How to determine the polarization of these photons ? ⇒ 4

Resonant photon scattering: $\gamma + ^{152}Sm \rightarrow ^{152}Sm^* \rightarrow ^{152}Sm + \gamma$

Resonant scattering:

To compensate the nuclear recoil, the photon energy must be slightly larger than 960 keV.

This is the case for photons which have been emitted in the direction of the Eu→Sm recoil (Doppler-effect).

Resonant scattering only possible for "forward" emitted photons, which carry the polarization of the Sm* and thus the polarization of the neutrinos.

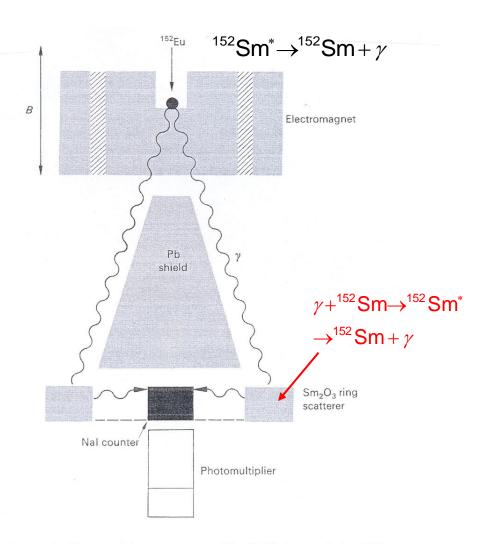
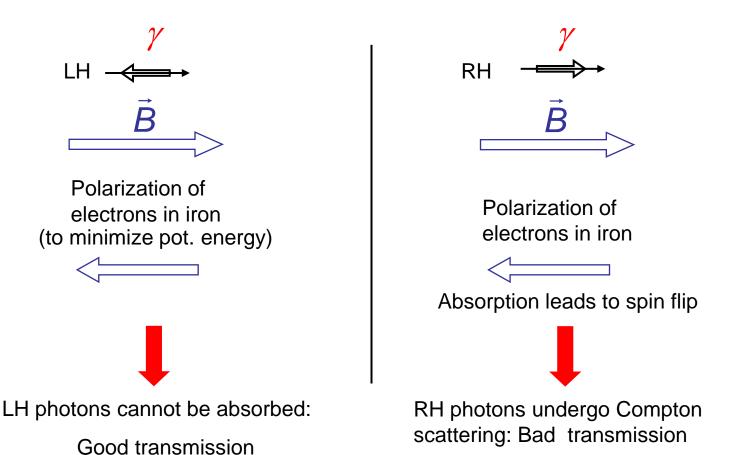


Fig. 7.8. Schematic diagram of the apparatus used by Goldhaber *et al.*, in which γ -rays from the decay of $^{152}\mathrm{Sm}^*$, produced following K-capture in $^{152}\mathrm{Eu}$, undergo resonance scattering in $\mathrm{Sm_2O_3}$ and are recorded by a sodium iodide scintillator and photomultiplier. The transmission of photons through the iron surrounding the source depends on their helicity and the direction of the magnetic field **B**.

4. Determination of the photon polarization

Exploit that the transmission index through magnetized iron is polarization dependent: Compton scattering in magnetized iron



Photons w/ polarization anti-parallel to magnetization undergo less absorption

Experiment

Sm* emitted photons pass through the magnetized iron. Resonant scattering allows the photon detection by a NaJ scintillation counter. The counting rate difference for the two possible magnetizations measure the polarization of the photons and thus the helicity of the neutrinos.

$$P_{y} = -0.66 \pm 0.14$$

→ photons from Sm* are left-handed. The measured photon polarization is compatible with a neutrino helicity of H=-1/2.

From a calculation with 100% photon polarization one expects a measurable value P_{ν} ~0.75. Reason is the finite angular acceptance.

 \rightarrow Also not exactly forward-going γ 's can lead to resonant scattering.

Summary: Lepton polarization in β decays

$$e^{-}$$
 e^{+} v v
 $H = \frac{1}{2} \cdot -v/c +v/c -1 +1$

3. "V-A Theory" for charged current weak interactions

3.1 Lorentz structure of the weak currents

Fermi:

$$M = C_V J_{N,\mu} \cdot J_e^{\mu^+} = C_V (\overline{u}_p \gamma_\mu u_n) \cdot (\overline{u}_e \gamma_\mu v_\nu)$$

Cannot explain the parity violation in beta decays.

More general ansatz (Gamov & Teller)

$$M = \sum_{i} C_{i} (\overline{u}_{p} \Gamma_{i} u_{n}) \cdot (\overline{u}_{e} \Gamma_{i} v_{v})$$

$$i = S, P, V, A, T$$

$$\overline{u}_{p} \Gamma_{i} u_{n}$$

bilinear Lorentz covariants:

$$\overline{\psi}$$
 (4×4) ψ

S:
$$\overline{u}_p u_n$$
 scalar

P:
$$\overline{u}_p \gamma^5 u_n$$
 pseudo-scalar

$$V: \overline{U}_{p} \gamma^{\mu} U_{p}$$
 vector

A:
$$\overline{U}_p \gamma^5 \gamma^\mu U_n$$
 pseudo-vector

T:
$$\overline{u}_{p}\sigma^{\mu\nu}u_{n}$$
 tensor

$$\overline{u}_{p} \; \Gamma_{i} \; u_{n} = \begin{cases} & \text{S} : \; \overline{u}_{p} u_{n} & \text{scalar} \\ & \text{P} : \; \overline{u}_{p} \gamma^{5} u_{n} & \text{pseudo-scalar} \\ & \text{V} : \; \overline{u}_{p} \gamma^{\mu} u_{n} & \text{vector} \\ & \text{A} : \; \overline{u}_{p} \gamma^{5} \gamma^{\mu} u_{n} & \text{pseudo-vector} \\ & \text{T} : \; \overline{u}_{p} \sigma^{\mu \nu} u_{n} & \text{tensor} & \sigma^{\mu \nu} = \frac{i}{2} \left(\gamma^{\mu} \gamma^{\nu} - \gamma^{\nu} \gamma^{\mu} \right) \end{cases}$$

18

$$\gamma^5 = i \gamma^0 \gamma^1 \gamma^2 \gamma^3$$

$$\gamma^{0} = \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix} \quad \gamma^{i} = \begin{pmatrix} 0 & \sigma_{i} \\ -\sigma_{i} & 0 \end{pmatrix} \longrightarrow \gamma^{5} = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}$$

$$(\gamma^5)^2 = 1$$
 $\gamma^5 \gamma^\mu + \gamma^\mu \gamma^5 = 0$

Remark: Pure P or A couplings do not lead to observable parity violation! Mixtures like $(1\pm\gamma^5)$ or γ^{μ} $(1\pm\gamma^5)$ do violate parity.

3.2 Chirality

Operators

$$P_L \equiv \frac{1}{2}(1-\gamma^5)$$

$$P_{R} \equiv \frac{1}{2}(1+\gamma^{5})$$

$$P_{L} \equiv \frac{1}{2}(1-\gamma^{5})$$
 are projection operators:
$$(P_{i})^{2} = P_{i}, \quad P_{L} + P_{R} = 1, \quad P_{L}P_{R} = 0$$
 (properties of γ^{5})

working on the fermion spinors they result in the left / right handed chirality components:

$$u_{L} = \frac{1}{2}(1 - \gamma^{5})u$$

$$u_{R} = \frac{1}{2}(1 + \gamma^{5})u$$
Not observable!

In contrary to helicity, which is an observable:

In contrary to helicity,
$$\frac{1}{2} \frac{\vec{\Sigma} \cdot \vec{p}}{|\vec{p}|}$$
 which is an observable:

Reminder: Dirac spinors

Eigenvectors of helicity operator

solution spin \uparrow i.e. helicity $\lambda = +\frac{1}{2}$

$$u_1(p) = \sqrt{E+m} \cdot \begin{bmatrix} 0 \\ p_z \\ E+m \\ p_x+ip_y \\ E+m \end{bmatrix}$$

$$\vec{p}$$
 along Z
$$u_1(p) = \sqrt{E+m} \cdot \begin{pmatrix} 1 \\ 0 \\ p/(E+m) \\ 0 \end{pmatrix}$$

solution spin \downarrow i.e. helicity $\lambda = -\frac{1}{2}$

$$u_{1}(p) = \sqrt{E+m} \cdot \begin{pmatrix} 1 \\ 0 \\ \frac{p_{z}}{E+m} \\ \frac{p_{x}+ip_{y}}{E+m} \end{pmatrix}$$

$$u_{2}(p) = \sqrt{E+m} \cdot \begin{pmatrix} 0 \\ 1 \\ \frac{p_{x}-ip_{y}}{E+m} \\ \frac{-p_{z}}{E+m} \end{pmatrix}$$

$$u_2(p) = \sqrt{E+m} \cdot \begin{bmatrix} 1 \\ 0 \\ -p/(E+m) \end{bmatrix}$$

$$\frac{1}{2} \frac{\sum_{k}^{k} p^{k}}{|\vec{p}|} u_{1} = \frac{1}{2} \begin{pmatrix} \sigma^{3} & 0 \\ 0 & \sigma^{3} \end{pmatrix} u_{1} = \frac{1}{2} u_{1}$$

$$\frac{1}{2} \frac{\sum_{i}^{k} p^{k}}{|\vec{p}|} u_{1} = \frac{1}{2} \begin{pmatrix} \sigma^{3} & 0 \\ 0 & \sigma^{3} \end{pmatrix} u_{1} = \frac{1}{2} u_{1} \qquad \frac{1}{2} \frac{\sum_{i}^{k} p^{k}}{|\vec{p}|} u_{1} = \frac{1}{2} \begin{pmatrix} \sigma^{3} & 0 \\ 0 & \sigma^{3} \end{pmatrix} u_{1} = -\frac{1}{2} u_{2}$$

Dirac spinors and chirality projection operators:

Positive helicity:

Positive helicity:

$$\frac{1-\gamma^{5}}{2}u_{1} = \frac{1}{2}\sqrt{E+m} \cdot \left(1 - \frac{p}{E+m}\right) \cdot \begin{pmatrix} 1\\0\\-1\\0 \end{pmatrix}$$

$$\approx 0 \text{ for E} >> m$$

$$\gamma^{5} = \begin{pmatrix} 0\\I\\0 \end{pmatrix}$$

Negative helicity:

$$\frac{1-\gamma^{5}}{2}u_{2} = \frac{1}{2}\sqrt{E+m} \cdot \left(1 + \frac{p}{E+m}\right) \cdot \begin{pmatrix} 0\\1\\0\\-1 \end{pmatrix} \rightarrow u_{2} \quad \text{for E} >> m$$

$$\approx \sqrt{E} \quad \text{for E} >> m$$

In the **relativistic limit** helicity states are also eigenstates of the chirality operators.

Polarization for particles with finite mass

Left handed spinor component of unpolarized electron:

$$U_1, U_2 \rightarrow U_I, U_R$$

$$u_L = \frac{1 - \gamma^5}{2} (u_1 + u_2)$$
 unpolarized

Not normalized

Helicity polarization of left handed chirality state u_L:

$$PoI = \frac{P(\lambda = + 1/2) - P(\lambda = -1/2)}{P(\lambda = + 1/2) + P(\lambda = -1/2)} = \frac{\left| \langle u_1 | u_L \rangle \right|^2 - \left| \langle u_2 | u_L \rangle \right|^2}{\left| \langle u_1 | u_L \rangle \right|^2 + \left| \langle u_2 | u_L \rangle \right|^2}$$
$$= \frac{(1 - p/(E + m))^2 - (1 + p/(E + m))^2}{(1 - p/(E + m))^2 + (1 + p/(E + m))^2} = -\frac{p}{E} = -\frac{v}{c}$$

i.e. the LH spinor component for a particle with finite mass is not fully in the helicity state "spin down" (λ =-½) .

For massive particles of a given chirality there is a finite probability to observe the "wrong" helicity state: \mathcal{P} = 1- (p/E)