
Experimental Tests of QCD

1. Test of QCD in e+e- annihilation

2. Running of the strong coupling constant

3. Study of QCD in deep inelastic scattering

Disclaimer:

Due to the lack of time I have selected only a few items!



Test of QCD in different processes

Discussed in 

Section 1 and 3

SPS/Tevatron / 

LHC

(not discussed)

not discussed



1.1 Discovery of the gluon

Discovery of 3-jet events by the TASSO 

collaboration (PETRA) in 1977:

3-jet events are interpreted as quark 

pairs with an additional hard gluon.
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at s=20 GeV

s is large

1. Test of QCD in e+e- annihilation

s~



1.2 Spin of the gluon

Ellis-Karlinger angle

Ordering of 3 jets: E1>E2>E3

Measure direction of jet-1 in the 

rest frame of jet-2 and jet-3: EK

Gluon spin J=1

Angular distribution of jets depend on gluon spin:



1.3 Multi-jet events and gluon self coupling

4-jet events

Non-abelian gauge theory (SU(3))

4 jet events allow to test the 

existence of gluon self coupling. Multi-jet event ALEPH exp (LEP)  



Multiple jets and jet algorithm

i
j

ijm

Hadronic particles i and j are grouped to a 

pseudo particle k as long as the invariant 

mass is smaller than the jet resolution 

parameter:

cut
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mij is the invariant mass of i and j.

Remaining pseudo particles are jets.

Jet Algorithm

Theory

Remark: today, different jet algorithms are used.



Gauge group structure of the strong interaction

Dynamics of gauge theory defined by commutation relation of  gauge 

group generators:
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a Gell-Mann matricesStructure 

constants

The generators and the structure 

constants appear in the vertex 

functions of the Feynman graphs: 
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vertex factor

In perturbative calculations the 

average and sum over all possible 

color  configuartions lead to 

combinatoric factors:
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Feynman rules for QCD: vertex factors



Color factors relevant for 4-jet events
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Casimir operator of SU(NC), 

here: SU(NC=3).
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Casimir operator of adjoint 

representation of gluons.

gluons

colors
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CF, CA describe the effective color charge of quark/gluon.



Bengston-Zerwas angle

Nachtmann-Reiter angle

Angular correlation of jets in 4-jet events

4-jet cross section:

FA,B,C,D,E  are kinematic functions

Exploiting the angular distribution of 4-jets: 

• Bengston-Zerwas angle

• Nachtmann-Reiter angle

Allows to measure the ratios TF/CF and NC/CF

SU(3) predicts: TF/CF = 0.375 and NC/CF =2.25
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Confirms QCD prediction (SU(3))  and gluon self-coupling:

TF/CF = 0.375 and NC/CF =2.25



2.  “Running” of the strong coupling s

screening anti-screening

Strong coupling s(Q
2)

Propagator corrections:
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nf = active quark flavors

2 = renormalization scale
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scale at which perturbation theory diverges 



Measurement of Q2 dependence of s

a) s from total hadronic cross section









 ...

)(
411.1

)(
1)()(

2

2










ss
ss ssQED

hadhad













  ...411.113

)(

)(
2

2
2











 ss
qhad Q

ee

hadronsee
R

s measurements are done at given scale Q2: s(Q
2)

b) s from hadronic event shape variables

3-jet rate: 
had

jetR
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3
depends on s

3-jet rate is measured as function of a jet resolution parameter ycut

s(s)

Final state 

gluon radiation.
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QCD calculation provides a theoretical prediction 

for R3
theo(s , ycut)

 fit R3
theo(s , ycut) to the data to determine s

Similarly other event shape variables (sphericity, 

thrust,…) can be used to obtain a prediction for s

s(s)
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thrust axis
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Maximizes longitudinal 

momentum



c) s from hadronic  decays
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d) s from DIS (deep inelastic scattering)
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Running of s and asymptotic freedom
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3. Study of QCD in deep inelastic scattering (DIS)

Courtesy: H.C. Schultz-Coulon



3.1 DIS in the quark parton model (QPM)
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• Elastic scattering:  W = M

M

Mass

W

 only one free variable

• Inelastic scattering:  W  M

scattering described by  

2 independent variables

x = fractional momentum of struck quark

y = Pq/Pk = elasticity, fractional energy 

transfer in proton rest frame

 = E - E = energy transfer in lab 
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Cross section in quark parton model (QPM)
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Proton
P

xPPq 

qP
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Elastic scattering on single quark

charge

Starting point:                               

electron muon scattering

Electron-quark scattering (quark momentum fraction x):
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Parton density qi(x)dx : Probability to find 

parton i in momentum interval [x, x+dx]
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Deep inelastic electron-proton scattering:

• Free partons: F2=F2(x)   “scaling”

• Spin ½ partons:  2xF1(x) = F2(x) 

(Callan-Gross relation)

Kinematical relations



Structure function F2 (=W2) depends 

only  on the dimensionless variable x:
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 Scale invariance: “scaling”

Indicates elastic scattering at point-like 

free constituents of the proton: partons
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3.2 Scaling violation
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Region of 1st SLAC 

measurement (1972)

Structure function:



QCD explains observed scaling violation

Large x: valence quark scattering Small x: Gluon+sea quark scattering

Q2   F2  for fixed x Q2   F2  for fixed (small) x

Scaling violation is one of the clearest manifestation of 

radiative effect predicted by QCD.



Quantitative description of scaling violation 
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Pqq probability of a quark 

to emit gluon and 

becoming a quark with 

momentum reduced by 

fraction z.

0 cutoff parameter 
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In the limit of small 

irradiation angle



DGLAP evolution equation 

(Dokshitzer, Gribov, Lipatov, Altarelli, Parisi, 1972 – 1977)

Changing to the quark (parton) densities:
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Integro-differential equation for q(x,Q2):
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2 QQ  sees that 

quarks q(x) are surrounded 

by softer quarks

We have 

ignored gluon 

splitting



Evolution of parton densities  (quarks and gluons)

evolution of quark 

density with lnQ2

z x
z

x

Splitting functions:  Probability that a parton (quark or gluon) emits 

a parton (q, g) with momentum fraction =x/z of the parent parton.
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x
z xevolution of gluon 

density with lnQ2



Splitting functions are calculated as power series in s up to a given order:
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DGLAP Evolution (“symbolic”):
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QCD evolution:

QCD predicts the PDF behavior for a 

scale Q2 once the PDF was measured 

at another scale. 
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Measurement of the parton densities / F2
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e.g. for y=1 
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Large increase of F2(x) for 

very small x - unexpected

)(2 xF

When does the rise stop ??

Fixed Traget
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Q2 dependence is correctly 

described by QCD evolution



Structure of the proton as seen by HERA
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