Standard Mo	Standard Model of Particle Physics										
Lecture Tutoria	er: Timo Weigand Ulrich Uwer Is: Kentaru Mawatari										
Monday Wednesday Tutorials	9:15 - 11:00 Phil 12 kHS 9:15 - 11:00 Phil 12 kHS Tue or Thu, 14:15, Phil 12										
http://www.physi.uni-heic	lelberg.de/~uwer/lectures/StandardModel/										

	Experimental SM Tests (selection)
1967/8	Standard Model, S. L. Glashow, A. Salam and S. Weinberg
1971	Renormalizability of non-abelian gauge theories, G. `t Hooft and M. Veltman
1973	Asymptotic freedom of QCD, D. Gross, D. Politzer and F. Wilzcek; Explaination of CP violation: 3 quark generation, M.Kobayashi, T.Maskawa
1973	Discovery of Neutral Currents: "Z-Boson exchange" (Gargamelle, CERN)
1974	Discovery of the 4th quark (SLAC / BNL) \rightarrow "November Revolution"
1975	Discovery of the Tau-Lepton
1979	Discovery of the gluon (DESY)
1983	Observation of W and Z bosons (UA1/2, CERN)
1989	Start of LEP I: Precision Z-physics measurement of radiative corrections
1 995	Discovery of the Top-Quark at TEVATRON
1996	Start of LEP II: W Pair production and Higgs search (until Nov 2000)
2001	Start of TEVATRON Run II: Precision measurement of Top-Quark and W-Boson properties, B physics
2009	Start of LHC: Discovery of the Higgs boson, New Physics?

Standard Model: Introduction

									~ ~		A 1	
4 6	experir	nen	ts: /	4LE	PH,	DEL	.PH	11, L	.3, (JP	4L	
				N	umber	of Event	s	77				
	Veen	4	$Z \rightarrow q\overline{q}$			LED	$Z \rightarrow \ell^+ \ell^-$				LED	
	1000/01	A 492	257	416	45.4	LEP	A 50	20	L 20	50	LEP	
	1990/91	433	357	410	404	1000		30	39	86	180	
		033	697	646	640	2741	70	70	09 64	88 70	294	
	1992	620		0.40	049	2007	10	10	04	101	250	
	1992 1993 1994	630 1640	1310	1359	1601	5910	202	137	197	1.41		
	1992 1993 1994 1995	630 1640 735	682 1310 659	1359 526	$1601 \\ 659$	5910 2579	202 90	137	127 54	191 81	291	
	1992 1993 1994 1995 Total	630 1640 735 4071	082 1310 659 3705	1359 526 3625	1601 659 4096	5910 2579 15497	202 90 500	137 66 384	127 54 343	191 81 497	291 1724	
	1992 1993 1994 1995 Total	630 1640 735 4071	682 1310 659 3705	1359 526 3625	1601 659 4096	5910 2579 15497	202 90 500	137 66 384	127 54 343	191 81 497	291 1724	
Table 1	1992 1993 1994 1995 Total 2: The q q a	630 1640 735 4071 and $\ell^+\ell$	082 1310 659 3705	1359 526 3625 t statis	1601 659 4096 tics, in	5910 2579 15497 units of	202 90 500	137 66 384 1sed fo	127 54 343 or Z a	191 81 497 nalyse	291 1724 s by the exper	ri-

Status of Theoretical Calculation *S.Heinemeyer, Summer* 2007 • $\Delta r: \mathcal{O}(\alpha^2)$: full electroweak two-loop results [A. Freitas, W. Hollik, W. Walter, G. Weiglein '03] [M. Awramik, M. Czakon '04] [Onishenko, Veretin '04] • $\Delta \rho: \mathcal{O}(\alpha \alpha_s^2)$: leading three-loop contributions [K. Chetyrkin, J Kühn, M. Steinhauser '95] [L. Avdeev et al. '95] • $\Delta \rho: \mathcal{O}(\alpha^2 \alpha_s), \mathcal{O}(\alpha^3)$: limit of $M_H \rightarrow 0$ [J. Van der Bij, K. Chetyrkin, M. Faisst, G. Jikia, T. Seidensticker '01] • $\Delta \rho: \mathcal{O}(\alpha^2 \alpha_s), \mathcal{O}(\alpha^3)$: limits with $M_H \neq 0$ [M. Faisst, J. Kühn, T. Seidensticker, O. Veretin '03] • $\Delta \rho: \mathcal{O}(\alpha \alpha_s^3)$: various four-loop contributions [Y. Schröder, M. Steinhauser '05] [K. Chetyrkin, M. Faisst, J. Kühn, P. Maierhoefer, C. Sturm '06] [R. Boughezal, M. Czakon '06] Calculation of M_W from muon decay (G_F): $\delta M_W \approx 4$ MeV

Shortcomings of the Standard Model Empirical problems Neutrino masses and mixing Baryogenesis (matter anti-matter symmetry) Dark matter Ordeptual problems Quadratic divergences in radiative Higgs mass corrections: "fine tuning" problem Origin of the three generations Explanation of masses Origin of gauge symmetries / quantum numbers Unification with gravity