Flavor Mixing and CP Violation

- 1. CKM Matrix
- 2. Mixing of neutral mesons
- 3. CP violation

1. CKM Matrix

2

1.1 Parameters of CKM matrix

Number of independent parameters:

18 parameter (9 complex elements)

-5 relative quark phases (unobservable)

-9 unitarity conditions

=4 independent parameters: 3 angles + 1 phase

PDG parametrization

3 Euler angles

$$\theta_{23}, \theta_{13}, \theta_{12}$$

δ

1 Phase

 $\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$

$$\begin{array}{cccc} & & & & & & \\ & & & & \\ -S_{12}C_{23} - C_{12}S_{23}S_{13}e^{i\delta} & & & \\ S_{12}C_{23} - S_{12}S_{23}S_{13}e^{i\delta} & & \\ & & \\ S_{12}S_{23} - C_{12}C_{23}S_{13}e^{i\delta} & & -C_{12}S_{23} - S_{12}C_{23}S_{13}e^{i\delta} & \\ & & \\ \end{array}$$

where $c_{ij} = \cos \theta_{ij}$, $s_{ij} = \sin \theta_{ij}$

Wolfenstein parametrization: reflects hierarchical structure of CKM matrix

$$\lambda, A, \rho, \eta \text{ with } \lambda = 0.22 \qquad |V_{ub}| \times e^{-i\gamma}$$

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3 \, (-i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3 \, (-\rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O \, (4)$$

$$|V_{td}| \times e^{-i\beta}$$

2. Mixing of neutral mesons

The quark mixing results into several interesting "loop" effects: Standard Model predicts at loop-level Flavor Changing Neutral Currents

Mixing of neutral mesons, e.g.: $B_d^0 \iff B_d^0$

Neutral mesons:

 $|P^{0}\rangle$: $\mathcal{K}^{0} = |d\overline{s}\rangle$ $D^{0} = |\overline{u}c\rangle$ $\mathcal{B}^{0}_{d} = |d\overline{b}\rangle$ $\mathcal{B}^{0}_{s} = |s\overline{b}\rangle$ $\left| \overline{P^{0}} \right\rangle$: $\overline{K^{0}} = \left| \overline{d}s \right\rangle$ $\overline{D^{0}} = \left| \overline{u}c \right\rangle$ $\overline{B^{0}_{d}} = \left| d\overline{b} \right\rangle$ $\overline{B^{0}_{s}} = \left| s\overline{b} \right\rangle$ 1987 1960 2007 2006

discovery of mixing

2.1 Mixing Phenomenology

Applies to all neutral mesons!

$$i\frac{d}{dt}\left(\frac{B^{0}(t)}{B^{0}(t)}\right) = \left(\mathbf{M} - \frac{i}{2}\Gamma\right)\left(\frac{B^{0}(t)}{B^{0}(t)}\right)$$

Flavor states = No mass eigenstates

Diagonalizing H:

Mass eigenstates: $|B_L\rangle = \rho |B^0\rangle + q |\overline{B^0}\rangle$ with m_{L,Γ_L} light complex coefficients $|p|^2 + |q|^2 = 1$ $|B_{H,L}(t)\rangle = |B_{H,L}(0)\rangle \cdot e^{-im_{H,L}t} \cdot e^{-\frac{1}{2}\Gamma_{H,L}t}$

 $|B^{0}\rangle = \frac{1}{2n}(|B_{L}\rangle + |B_{H}\rangle) |\overline{B}^{0}\rangle = \frac{1}{2n}(|B_{L}\rangle - |B_{H}\rangle)$

Flavor eigenstates:

Mixing of neutral mesons

$$\underbrace{P(B^{0} \rightarrow B^{0}) = P(\overline{B^{0}} \rightarrow \overline{B^{0}}) = \frac{1}{4} \left[e^{-\Gamma_{L}t} + e^{-\Gamma_{H}t} + 2e^{-(\Gamma_{L} + \Gamma_{H})^{\frac{3}{2}/2}} \cos \Delta mt \right]}_{CPT}$$

$$P(B^{0} \rightarrow \overline{B^{0}}) = \frac{1}{4} \left| \frac{q}{p} \right|^{2} \left[e^{-\Gamma_{L}t} + e^{-\Gamma_{H}t} - 2e^{-(\Gamma_{L} + \Gamma_{H})^{\frac{3}{2}/2}} \cos \Delta mt \right] \qquad \Delta m = m_{H} - m_{L}$$

$$P(\overline{B^{0}} \rightarrow B^{0}) = \frac{1}{4} \left| \frac{p}{q} \right|^{2} \left[e^{-\Gamma_{L}t} + e^{-\Gamma_{H}t} - 2e^{-(\Gamma_{L} + \Gamma_{H})^{\frac{3}{2}/2}} \cos \Delta mt \right]$$

CP, T- violation in mixing:
$$P(B^0 \to \overline{B^0}) \neq P(\overline{B^0} \to B^0) \Rightarrow \left|\frac{q}{p}\right| \neq 1$$

B⁰-B⁰ Mixing

2.2 Standard Model Prediction

 $B_d^0 - B_d^0$

Oscillation is about 35 times stronger than in the case of $\rm B_{d}$ ($\rm V_{ts}~$ much larger than $\rm ~V_{td})$

B oscillation:

Deactivation of GIM suppression because of large mass splitting:

What would be the mixing if all quarks had the same masses? (Unitarity of CKM matrix -> cancellation of FCNC!)

Non-observed FCNC and GIM mechanism

GIM

FCNC in the 3 quark model: $K^0 \rightarrow \mu^+ \mu^-$

Historical retrospect

 $M \sim \sin\theta_c \cos\theta_c$

Theoretically one predicts large BR, in contradiction with experimental limits for this decay:

 $\frac{BR(K_L \to \mu^+ \mu^-)}{BR(K_L \to all)} = (7.2 \pm 0.5) \cdot 10^{-9}$

Proposal by Glashow, Iliopoulos, Maiani, 1970:

There exists a fourth quark which builds together with the s quark a second doublet:

$$\begin{pmatrix} c \\ s' \end{pmatrix} = \begin{pmatrix} c \\ -\sin\theta_c \cdot d + \cos\theta_c \cdot s \end{pmatrix}$$

Additional Feynman-Graph for $K^0 \rightarrow \mu \mu$ which compensates the first one:

 $M \sim -\sin\theta_c \cos\theta_c$

Prediction of a fourth quark: Mass prediction $BR=f(m_c,...)$

Historical remark:

The observation of the B_d meson mixing put the first lower limit on the top mass: $m_{top} > 50$ GeV.

If the top mass was lower the GIM mechanism would in a small Δm , i.e. the B would oscillate very slowly and would decay before mixing.

The GIM mechanism is a result of the unitarity of the CKM matrix. Only different quark masses lead to a non-perfect cancellation and are the soruces of observable FCNCs at loop level.

Experimental Status of B meson mixing

 $\Delta m_{s} = 17.77 \pm 0.10 (\text{stat.}) \pm 0.07 (\text{syst.}) \text{ ps}^{-1} = \frac{26}{\tau}$ (CDF Collaboration, September 2006) 35 times faster than B⁰

Measuring B_s Mixing

Determination of Production Flavor = Tagging

3. CP Violation

Reminder: Maximum C and P violation in weak decays:

3.1 Discovery of CP Violation in Kaon Decays

Observation of two neutral kaons K_L (long) and K_s (short) with different lifetimes:

$\tau(K_L^0) = 41.7 \pm 0.4$ ms	>> $\tau(K_S^0) = 0.089 \pm 0.001$ ns
$K_L^0 ightarrow 3\pi$	$K^0_S \rightarrow 2\pi$
CP = -1	CP = +1

$$oldsymbol{\mathcal{K}}^{0}=\left|oldsymbol{d}\,oldsymbol{ar{s}}
ight
angle \ \overline{oldsymbol{\mathcal{K}}}^{0}=\left|oldsymbol{\overline{d}}\,oldsymbol{s}
ight
angle$$

Interpretation: (neglecting possible CP violation)

$$|K_{L}\rangle = |K_{2}\rangle| = \frac{1}{\sqrt{2}} \left(|K^{0}\rangle - |\overline{K^{0}}\rangle \right) \qquad CP|K_{2}\rangle = -|K_{2}\rangle \qquad Phase convention: CP|K^{0}\rangle = |\overline{K^{0}}\rangle \\ |K_{S}\rangle = |K_{1}\rangle| = \frac{1}{\sqrt{2}} \left(|K^{0}\rangle + |\overline{K^{0}}\rangle \right) \qquad CP|K_{1}\rangle = +|K_{1}\rangle \qquad CP|\overline{K^{0}}\rangle = |K^{0}\rangle$$

Large differences between lifetimes

$$\Delta m = (.5303 \pm 0.0009) \cdot 10^{10} \hbar s^{-1}$$

$$= (.49 \pm 0.006) \cdot 10^{-12} \text{ MeV}$$

$$\Delta \Gamma = -11.182 \cdot 10^{9} \hbar s^{-1}$$

If no CPV:

$$|\kappa_L\rangle = \frac{1}{\sqrt{2}} \langle \kappa^0 \rangle - |\overline{\kappa}^0 \rangle$$
 CP = -1

should always decay into 3π : CP($|3\pi>$)= -1

and never into
$$2\pi$$
 CP(| 2π >)=+1

Explanation:

$$|K_{L}\rangle = \frac{1}{\sqrt{1+|\varepsilon|^{2}}} \langle K_{2}\rangle - \varepsilon |K_{1}\rangle^{2}$$

Not a CP eigenstate: CP violation !

Christenson, Cronin, Fitch, Turlay, 1964

 $\theta = \angle (\vec{p}_{K}, (\vec{p}_{\pi^+} + \vec{p}_{\pi^-}))$

After 35 years of kaon physics:

rate

1999

The measured CP violation in the kaon system is small – theoretical interpretation is quiet difficult !

In the B meson system effects are much larger, easier to understand and they can be calculated in the Standard Model. CPV in the B⁰ system was observed in 2000.

3.2 CP Violation in Standard Model: complex CKM elements

<u>Remark:</u> For 2 quark generations the mixing is described by the real 2x2 Cabbibo matrix \rightarrow no CP violation !!. To explain CPV in the SM Kobayashi and Maskawa have predicted a third quark generation.

Moreover, as can be shown, CPV requires that all **u-type and all d-type quarks have different masses.**

CKM Matrix and Unitarity Triangle

Unitary CKM matrix: $VV^{\dagger} = 1 \rightarrow 6$ "triangle" relations in complex plane:

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

$$\int_{V_{ud}} V_{ub} + V_{cd} V_{cb}^{*}$$

$$V_{td} V_{tb}^{*}$$

$$V_{td} V_{tb}^{*}$$

$$Re = J/2$$

$$V_{cd} V_{cb}^{*}$$

$$V_{cd} V_{cb}^{*}$$

$$V_{ud} V_{ub}^{*} + V_{cd} V_{cb}^{*} + V_{td} V_{tb}^{*} = 0$$

$$V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} = 0$$

$$V_{td}V_{ud}^{*} + V_{ts}V_{us}^{*} + V_{tb}V_{ub}^{*} = 0$$

Important for B_d and B_s decays

Non degenerated "triangles" only in case of CP violation: Tip / triangle area defines the amount/strength of CPV!

Strength of CPV characterized by Jarlskog invariant (area) $J = \text{Im} \left(V_{ij} V_{kl} V_{ij}^* V_{kj} \right)$ In SM: $J = \text{Im} \left[V_{us} V_{cb} V_{ub}^* V_{cs}^* \right] = A^2 \lambda^6 \eta \left(-\lambda^2/2 + O(\lambda^{10}) - 10^{-5} \right)$

Rescaled unitarity condition $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$ "The Unitarity Triangle" Im α Re $\alpha \equiv \arg \left| -\frac{V_{td}V_{tb}}{V_{ud}V_{ub}^{*}} \right| \qquad \beta \equiv \arg \left| -\frac{V_{cd}V_{cb}^{*}}{V_{cd}V_{cb}^{*}} \right| \qquad \gamma \equiv \arg \left| -\frac{V_{ud}V_{ub}}{V_{cd}V_{cb}^{*}} \right|$

Experimental confirmation of UT:

The sides of the UT can be measured via

- B_d and B_s oscillation
- Semileptonic B decays with a $b \rightarrow c$ or $b \rightarrow u$ quark transition.

The angles (phases) can be determined from CP asymmetries in B decays! Observation of CP violating phases require presence of interfering amplitudes!

Need two phase differences between A_1 and A_2 : Weak difference which changes sign under CP and another phase difference (strong) which is unchanged.

"3 Ways" of CP violation in meson decays

a) Direct CP violation

b) CP violation in mixing

$$\left|\frac{q}{p}\right| \neq 1$$

c) CP violation through interference of mixed and unmixed amplitudes

$$\Gamma(B^0_{t=0} \to f)(t) \neq \Gamma(\overline{B}^0_{t=0} \to f)(t)$$

Asymmetrie modulated by $\sim \sin \Delta m t$

Combinations of the 3 ways are possible!

ad a) Direct CP violation (B system)

CP Asymmetrie

$$\overline{A}|^2 - |A|^2 = 4|A_1||A_2|\sin\varphi\sin\delta$$

$$A_{CP} = \frac{N(\overline{B}^0 \to K^+ \pi^-) - N(B^0 \to K^- \pi^+)}{N(\overline{B}^0 \to K^+ \pi^-) + N(B^0 \to K^- \pi^+)}$$

 $A_{CP} = -0.133 \pm 0.030 \pm 0.009$ **4.2** σ

PRL93(2004) 131801.

Evidence of anomalous CP-violation in the mixing of neutral B mesons:

Evidence for an anomalous like-sign dimuon charge asymmetry

We measure the charge asymmetry A of like-sign dimuon events in 6.1 fb⁻¹ of $p\overline{p}$ collisions recorded with the D0 detector at a center-of-mass energy $\sqrt{s} = 1.96$ TeV at the Fermilab Tevatron collider. From A, we extract the like-sign dimuon charge asymmetry in semileptonic b-hadron decays: $A_{sl}^b = -0.00957 \pm 0.00251$ (stat) ± 0.00146 (syst). This result differs by 3.2 standard deviations from the standard model prediction $A_{sl}^b(SM) = (-2.3^{+0.5}_{-0.6}) \times 10^{-4}$ and provides first evidence of anomalous CP-violation in the mixing of neutral B mesons.

arXiv:1005.2757v1 [hep-ex] 16 May 2010

c) CP violation in interference between mixing and decay

 $\Gamma(t) \sim e^{-\Gamma t} \left[-\sin 2\beta \sin(\Delta m t) \right]$

 $\Gamma(t) \sim e^{-\Gamma t} \left[+\sin 2\beta \sin(\Delta m t) \right]$

$$A_{CP}(t) = \frac{\Gamma(\overline{B}^0 \to f)(t) - \Gamma(B^0 \to f)(t)}{\Gamma(\overline{B}^0 \to f)(t) + \Gamma(B^0 \to f)(t)} = \sin 2\beta \sin(\Delta m t)$$

SM prediction for $\lambda = A_1 / A_2$ (amplitude ratio)

Calculation of the time-dependent CP asymmetry

$$\Gamma(B^{0} \rightarrow f_{CP})(t) \propto \frac{e^{-|\Delta t|/\tau_{B^{0}}}}{\left(+ |\lambda_{CP}|^{2} \right)^{2}} \left[\frac{1 + |\lambda_{CP}|^{2}}{2} - \operatorname{Im} \left(\sum_{CP} \operatorname{sin} \left(M_{d} t \right) + \frac{1 - |\lambda_{CP}|^{2}}{2} \operatorname{cos} \left(M_{d} t \right) \right] \right]$$

$$\Gamma(\overline{B^{0}} \rightarrow f_{CP})(t) \propto \frac{e^{-|\Delta t|/\tau_{B^{0}}}}{\left(+ |\lambda_{CP}|^{2} \right)^{2}} \left[\frac{1 + |\lambda_{CP}|^{2}}{2} + \operatorname{Im} \left(\sum_{CP} \operatorname{sin} \left(M_{d} t \right) - \frac{1 - |\lambda_{CP}|^{2}}{2} \operatorname{cos} \left(M_{d} t \right) \right] \right]$$

$$\begin{split} \overbrace{A_{CP}(t)} &= \frac{\Gamma(\overline{B}^{0}(t) \rightarrow f_{CP}) - \Gamma(\overline{B}^{0}(t) \rightarrow f_{CP})}{\Gamma(B^{0}(t) \rightarrow f_{CP}) + \Gamma(\overline{B}^{0}(t) \rightarrow f_{CP})} = \overbrace{r}^{t} \sin \P m_{d} t - \overbrace{C_{f} \cos \P m_{d} t}^{t} \\ \hline \text{negligible} \\ \hline \textbf{Time resolved} \\ S_{f} &= \frac{2 \text{Im } \lambda_{CP}}{1 + \left|\lambda_{CP}\right|^{2}} \quad C_{f} &= \frac{1 - \left|\lambda_{CP}\right|^{2}}{1 + \left|\lambda_{CP}\right|^{2}} \\ \hline \textbf{Interference} \\ &= \sin 2\beta \text{ for } B^{0} \rightarrow J/\psi K_{S} \end{split}$$

To measure CP violation in B_d system:

- Need many B (several 100×10^9)
- Need to know the flavor of the B at t=0
- Need to reconstruct the decay length to measure t

3.4 Measurement of sin2 β : Asymmetric e⁺ e⁻ B factory

Measurement of sin2 β in B_d \rightarrow J/ ψ K_s

Measurement of sin2 β : Golden decay channel $B^0 \rightarrow \psi K_s$

3.5 Experimental status of the Unitarity Triangle

Standard Model CKM mechanism confirmed

- 1. Large CP Violation in B decays
- 2. Large direct CP violation observed
- 3. CPV parameter related to magnitude of non-CP observables