The Standard Model of Particle Physics - SoSe 2010 Assignment 6

Note: There is no tutorial on June 3 due to Fronleichnam.

(Due: June 10, 2010)

1 Some group theory

Let G be a compact Lie group with hermitian generators T_{a}.
1.) From the general theory of Lie groups it follows that there exists an antisymmetric map

$$
\begin{equation*}
\left[T_{a}, T_{b}\right]=i f_{a b c} T_{c} \tag{1}
\end{equation*}
$$

with summation over c understood, subject to the Jacobi identity

$$
\begin{equation*}
\left[T_{a},\left[T_{b}, T_{c}\right]\right]+\left[T_{b},\left[T_{c}, T_{a}\right]\right]+\left[T_{c},\left[T_{b}, T_{a}\right]\right]=0 \tag{2}
\end{equation*}
$$

Show that this implies the following property of the structure constants $f_{a b c}$:

$$
\begin{equation*}
f_{a d e} f_{b c d}+f_{b d e} f_{c a d}+f_{c d e} f_{a b d}=0 . \tag{3}
\end{equation*}
$$

2.) To give a finite-dimensional unitary representation of G one has to find a set of $N \times N$ hermitian matrices T_{a}^{R} that satisfy the defining relation (1) and act by multiplication on an N-complex dimensional vector $\psi_{i}, i=1, \ldots N . N$ is the dimension of the representation. In this case, the bilinear [,] in (1) is just the commutator of two matrices $N \times N$ matrices.
a.) Show that the Jacobi identity (2) is a triviality when expressed in terms of the representation T_{a}^{R}.
b.) Use a group theory book or any other source of your choice to revise the following definitions: irreducible representation - simple Lie algebra - semi-simple Lie algebra.
c.) For an irreducible unitary representation one can can normalise the generators T_{a}^{R} such that

$$
\begin{equation*}
\operatorname{tr}\left(T_{a}^{R} T_{b}^{R}\right)=C(R) \delta^{a b} \tag{4}
\end{equation*}
$$

where $C(R)$ is a constant for each representation. Use this to show that

$$
\begin{equation*}
f_{a b c}=-\frac{i}{C(r)} \operatorname{tr}\left(\left[T_{a}^{R}, T_{b}^{R}\right] T_{c}^{R}\right) \tag{5}
\end{equation*}
$$

and deduce that $f_{a b c}$ is antisymmetric in all three indices.

2 Yang-Mills theory

Consider the gauge transformation

$$
\begin{equation*}
\psi_{i}(x) \rightarrow U_{i j}(x) \psi_{j}(x), \quad U_{i j}=\exp \left(i \theta_{a}(x) T_{a}^{R}\right)_{i j} \tag{6}
\end{equation*}
$$

in some representation T_{a}^{R} of a simple Lie group G. In the following we omit the superscript R.
1.) The covariant derivative is a matrix valued operator defined via

$$
\begin{equation*}
D_{\mu} \psi(x)=\left(\partial_{\mu} \times 1+i g T_{a} A_{a \mu}(x)\right) \psi(x) . \tag{7}
\end{equation*}
$$

Show that $D_{\mu} \psi(x)$ transforms under a gauge transformation as

$$
\begin{equation*}
D_{\mu} \psi(x) \rightarrow U D_{\mu} \psi(x) \tag{8}
\end{equation*}
$$

provided the gauge field $\underline{A}_{\mu} \equiv\left(A_{\mu}\right)_{a}$ transforms as

$$
\begin{equation*}
\underline{T} \cdot(\underline{A})_{\mu} \rightarrow U \underline{T} \cdot(\underline{A})_{\mu} U^{-1}+\frac{i}{g}\left(\partial_{\mu} U\right) U^{-1} \tag{9}
\end{equation*}
$$

where $\underline{T} \cdot(\underline{A})_{\mu}=T_{a} A_{a \mu}$ with summation over indices understood.
2.) The Yang-Mills field strength is defined as

$$
\begin{equation*}
\underline{T} \cdot(\underline{F})_{\mu \nu}=\frac{i}{g}\left[D_{\mu}, D_{\nu}\right] . \tag{10}
\end{equation*}
$$

Show that in components this is

$$
\begin{equation*}
\left(F_{a}\right)_{\mu \nu}=\partial_{\mu} A_{a \nu}-\partial_{\nu} A_{a \mu}-g f_{a b c}\left(A_{b}\right)_{\mu}\left(A_{c}\right)_{\nu} \tag{11}
\end{equation*}
$$

Verify the transformation law

$$
\begin{equation*}
\underline{T} \cdot(\underline{F})_{\mu \nu} \rightarrow U \underline{T} \cdot(\underline{F})_{\mu \nu} U^{-1} . \tag{12}
\end{equation*}
$$

Use this to show that

$$
\begin{equation*}
L_{Y M}=-\frac{1}{4} \int d^{4} x\left(F_{a}\right)_{\mu \nu}\left(F_{a}\right)^{\mu \nu}+\bar{\psi}\left(i \gamma^{\mu} D_{\mu}+M\right) \psi \tag{13}
\end{equation*}
$$

is gauge invariant.
Hint: Rewrite the gauge part as a trace and use the cyclic property of the trace.
3.) Derive the cubic and quartic self-interactions for the gauge fields from $L_{Y M}$.
4.) Work out the special case where the Lie group is $G=U(1)$ and recover the known expressions for QED.

3 Propagator, gauge fixing and massive $\mathrm{U}(1) \mathrm{s}$

Consider the Lagrangian for an abelian gauge theory

$$
\begin{equation*}
L_{U(1)}=-\frac{1}{4} \int d^{4} x F_{\mu \nu} F^{\mu \nu} \tag{14}
\end{equation*}
$$

a.) Show that in momentum space it reads

$$
\begin{equation*}
L_{U(1)}=\frac{1}{2} \int \frac{d^{4} p}{(2 \pi)^{4}} \tilde{A}^{\mu}(-p) \mathcal{O}_{\mu \nu}(p) \tilde{A}^{\nu}(p), \quad \mathcal{O}_{\mu \nu}(p)=-\left(g_{\mu \nu}-\frac{p^{\mu} p^{\nu}}{p^{2}}\right) p^{2} \tag{15}
\end{equation*}
$$

b.) Consider the two operators

$$
\begin{equation*}
P_{\mu \nu}^{T}=g_{\mu \nu}-\frac{p_{\mu} p_{\nu}}{p^{2}}, \quad P_{\mu \nu}^{L}=\frac{p_{\mu} p_{\nu}}{p^{2}} \tag{16}
\end{equation*}
$$

Show that these are generalised projection operators in the sense that

$$
\begin{equation*}
P_{\mu \nu}^{T} P^{T^{\nu \lambda}}=P_{\mu}^{T \nu}, \quad P_{\mu \nu}^{L} P^{L^{\nu \lambda}}=P_{\mu}^{L \nu}, \quad P_{T} P_{L}=0, \quad P_{\mu \nu}^{T}+P_{\mu \nu}^{L}=g_{\mu \nu} \tag{17}
\end{equation*}
$$

Show that P_{L} does not couple to a conserved current J^{μ}.
c.) A general property of the propagator is that it is a Green's function, i.e. it is the inverse of the operators appearing in the quadratic terms in a lagrangian. In momentum space this means that

$$
\begin{equation*}
\tilde{\Delta}_{\mu \nu}(p) \mathcal{O}^{\nu \lambda}(p)=i \delta_{\mu}^{\lambda} \tag{18}
\end{equation*}
$$

For the Lagrangian (15) we have $\mathcal{O}^{\nu \lambda}=\mathcal{P}^{\mathcal{T}^{\nu \lambda}}$, which has no inverse. This is one way to see that a sensible definition of the quantum theory requires gauge fixing by adding the Lagrangian multiplier

$$
\begin{equation*}
L_{f i x}=-\int d^{4} x \frac{1}{2 \xi}\left(\partial_{\mu} A^{\mu}\right)^{2} \tag{19}
\end{equation*}
$$

Give the resulting operator $\mathcal{O}(p, \xi)$ in momentum space and show that the propagator is now well-defined and reads

$$
\begin{equation*}
\tilde{\Delta}_{\mu \nu}(p)=\left(g_{\mu \nu}-(1-\xi) \frac{p^{\mu} p^{\nu}}{p^{2}}\right) \frac{-i}{p^{2}+i \epsilon} \tag{20}
\end{equation*}
$$

d.) Now consider massive $U(1)$ theory by adding a mass term,

$$
\begin{equation*}
L_{U(1), \text { massive }}=\int d^{4} x\left(-\frac{1}{4}\right) F_{\mu \nu} F^{\mu \nu}+\frac{1}{2} M_{A}^{2} A_{\mu} A^{\mu} \tag{21}
\end{equation*}
$$

Derive the propagator in momentum space. Show in particular that it contains a piece of the form $\frac{p_{\mu} p_{\nu} / M_{A}^{2}}{p^{2}-M_{A}^{2}+i \epsilon}$.
e.) Suppose now that the massive photon couples to a conserved current J_{μ}. Show that for large momenta, the relevant part of the propagator which couples to the conserved current scales like $\frac{1}{p^{2}}$ as is the case for a massless $\mathrm{U}(1)$ propagator. In other words, show that the piece $\frac{p_{\mu} p_{\nu} / M_{A}^{2}}{p^{2}-M_{A}^{2}+i \epsilon}$ does not couple to a conserved current. This is important because it ensures that the theory remains normalisable as this piece would scale like $\frac{1}{M_{A}^{2}}$ for large p^{2} and destroy renormalisable.
Note: This completes the proof that a massive abelian theory is both unitary (see lecture) and renormalisable even though gauge invariance is broken. Note that renormalisability requires that J^{μ} is conserved and thus that there is still a global symmetry. Both arguments break down for non-abelian gauge theories.

