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On this examples sheet we fill in some gaps of the derivation of the S-
matrix as given in the lecture. The purpose of the following exercises is
to review the relevant concepts. Please take this opportunity especially
if you have not attended a QFT course before.

Note that for brevity we are ignoring most issues associated with the
definition of the vaccum in the perturbed versus the unperturbed theory.
A more thorough, but also more complicated presentation of the S-matrix
can be found e.g. in Peskin/Schröder, Chapter 4.2, 4.3., 4.6.

Finally, what we actually need for practical purposes in this course is the
definition of the S-matrix and its applications such as the one given in
the lecture on the computation of scattering in Φ4-theory.

1 Wick’s theorem

a.) Recall the definition of the normal ordered product : A : for an operator A as
given in the lecture. Argue that

〈: A :〉 = 0. (1)

b.) Verfiy that

φ(x)φ(y) =: φ(x)φ(y) : +[φ(+)(x), φ(−)(y)] (2)

in terms of the positive and negative frequency solutions for a scalar field given in
the lecture. Use this to show explicity that

T
(
φ(x)φ(y)

)
=: φ(x)φ(y) : +f(x, y), (3)

where f(x, y) is a c-number. Give the explicit form of f(x, y) in terms of commutators
of φ±(x). Deduce from this that

T
(
φ(x)φ(y)

)
=: φ(x)φ(y) : +i∆F (x− y). (4)

c.) Write down Wick’s theorem for four fields T
(
φ(x1)φ(x2)φ(x3)φ(x4)

)
.



2 Interaction picture

a.) Consider a free quantum system with Hamiltonian H0, where the subscript re-
minds us that the system contains no interactions. Recall, e.g. by consulting your
favourite quantum mechanics book, that one distinguishes the Schrödinger picture
versus the Heisenberg picture as follows:

• In the Schrödinger picture, the operators AS are time independent, while the
states |ψS(t)〉 carry all information about the time evolution via the Schrödin-
ger equation

i
d

dt
|ψS(t)〉 = H0 |ψS(t)〉. (5)

• In the Heisenberg picture the time evolution is carried by the operators AH(t).
The states per se carry no time evolution; rather the state |ψH,t〉 is meant as
the state created from the vacuum by the operator ψH(t).

• Both pictures are related such that the time dependence of expectation values
match, i.e. 〈ψS(t)|AS|ψS(t)〉 = 〈ψH,t|AH(t)|ψH,t〉.

Suppose that at time t0 the states in both pictures agree,

|ψS(t0)〉 = |ψH,t0〉. (6)

Convince yourself that the expectation values of the two pictures match as above if
AS and AH are related as

AH(t) = eiH0tASe
−iH0t. (7)

Give the law for the time evolution of AH(t).

b.) Go through the following points carefully to familiarize yourself with the concept
of interaction picture operators:

• Consider the Lagrangian density L = L0 + LI describing the dynamics of a
scalar field Φ(x) in Φ4-theory,

L0 = −1

2

∫
Φ(x)(∂2 +m2)Φ(x), LI = − λ

4!
Φ4(x). (8)

The Hamiltonian H = H0 + HI is a time independent quantity. It is defined
for the the fields and their conjugate momenta at, say, time t = 0,

H0 =

∫
d3x
(
π(0, ~x)Φ(0, ~x)− L0

)
, HI = −

∫
d3x
(
LI
)
. (9)



• In the interaction picture, the interaction field ΦI(t, ~x) is defined as

ΦI(t, ~x) = eiH0tΦI(0, ~x)e−iH0t. (10)

If we take ΦI(0, ~x) to be the Schrödinger picture operator, ΦI(t, ~x) can be
viewed as a Heisenberg-picture operator of the free theory since only H0 is
used in its definition. This means that all previous results on quantisation of
the free field equal time commutation relations and mode expansion directly
carry over to ΦI(t, ~x).

• Let |ΦI(t)〉 denote a state created by ΦI(t) by acting on the unperturbed va-
cuum |0〉:

|ΦI(t)〉 = ΦI(t, ~x)|0〉. (11)

The relation between this state and the Schrödinger picture state |ΦS(t)〉 is
seen as follows: At time t = 0, the Schrödinger picture and the Heisenberg
picture state agree:

|ΦS(t)〉|t=0 = Φ(0, ~x)|0〉. (12)

Thus

|ΦS(t)〉|t=0 = e−iH0te+iH0tΦ(0, ~x)e−iH0t|0〉 (13)

⇒ |ΦS(t)〉|t=0 = e−iH0t |ΦI(t)〉. (14)

c.) The time evolution for |ΦS(t)〉 involves the full Hamiltonian H = H0 +HI ,

i
d

dt
|ΦS(t)〉 = H |ΦS(t)〉. (15)

Deduce from this and from the relation (14) that

e−iH0t i
d

dt
|ΦI(t)〉 = HI e

−iH0t |ΦI(t)〉 (16)

and thus

i
d

dt
|ΦI(t)〉 = H̄I(t)|ΦI(t)〉, H̄I(t) = eiH0tHIe

−iH0t. (17)

This establishes that the time evolution of ΦI(t, ~x) is governed by the interaction
Hamiltonian evaluated now in terms of ΦI(t, ~x). Since ΦI(t, ~x) is essentially quantised
as a free field, we can relabel ΦI(t, ~x)→ Φ(x).



3 Time evolution and S-matrix

The equation (17) is our master equation for the evolution of a state in the interaction
picture.

a.) This equation is integrated as follows:

|Φ(t)〉 = |Φi〉+
1

i

∫ t

−∞
dt′H̄I(t′)|Φ(t′)〉, (18)

where |Φi〉 is thie initial state at ti = −∞. Convince yourself that this evolution
from |Φi〉 at ti = −∞ up to |Φ(t)〉 can be rewritten as

|Φ(t)〉 = U(t)|Φi〉, U(t) = 1 +

∫ t

−∞
dt′H̄I(t′)U(t′), (19)

and that the time evolution operator U(t) satisfies the equation

i
d

dt
U(t) = H̄I(t)U(t). (20)

b.) The equation (20) for U(t) can be solved perturbatively as the series

U(t) = 1 +
1

i

∫ t

−∞
dt′H̄I(t′) +

1

i2

∫ t

−∞
dt′
∫ t′

−∞
dt′′H̄I(t′)H̄I(t′′) + . . . . (21)

Can you explain the structure of this iteration?

c.) The final form for U(t) is obtained by rewriting (21) in terms of the time-ordered
product. In this process we change the integration range as follows:

U(t) = 1 +
1

i

∫ t

−∞
dt′H̄I(t′) +

1

2!

1

i2

∫ t

−∞
dt′
∫ t

−∞
dt′′ T

(
H̄I(t′)H̄I(t′′)

)
+ (22)

+
1

3!

1

i3

∫ t

−∞
dt′
∫ t

−∞
dt′′
∫ t

−∞
dt′′′ T

(
H̄I(t′)H̄I(t′′)H̄I(t′′′)

)
+ . . . (23)

Explain the appearance of this factor n! at each order and the appearance of the
time-ordered product.

d.) How is the S-matrix defined?


