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1 The Lorentz algebra

a.) Consider R1,3 as the space of 4-vectors endowed with metric gµν = diag(1,−1,−1,−1).
Unless noted otherwise we use the notation x, y for 4-vectors: x ≡ (xµ), µ = 0, . . . 3;
~x to denote their spacelike components xi, i = 1, 2, 3; xy = xµyµ for the salar product
in R1,3 and ~x~y = +

∑
i x

iyi.

Show that the rigid linear transformation

xµ → x′µ = Λµ
νx

ν + aµ (1)

leaves the distance in R1,3 invariant,

(x′ − y′)2 = (x− y)2, (2)

provided

Λ α
ρ Λρ

κ = δακ, i.e. ΛT = Λ−1. (3)

b.) Recall the following facts about the Lorentz group: From (3) it follows that

detΛ = ±1. (4)

The Lorentz group is not connected, but contains 4 connected components. These
are distinguished by detΛ = 1 vs. detΛ = −1 together with Λ0

0 > 0 vs. Λ0
0 < 0.



The piece detΛ = 1, Λ0
0 > 0 is called connected to the identity because infinitesimal

Lorentz transformations of this type can be written as

Λα
β = δαβ + ωαβ. (5)

The other pieces can be obtained from the piece connected to the identity via the
discrete symmetry transformations

ΛP = diag(1,−1,−1,−1) parity, ΛT = diag(−1, 1, 1, 1) time reversal. (6)

c.) Show that eq. (3) implies for infinitesimal Lorentz transformations of the type
(5)

ωµν = −ωνµ. (7)

Use this to argue that the full Poincaré algebra in 4 dimensions is 10-dimensional.
Verify that rotations around the 3-axis by an angle θ are given by ω12 = θ = −ω21

(and all other components vanishing). What do transformations ω01 = β (and all
other components vanishing) correspond to?

Finite Lorentz transformations are obtained from (5) by exponentiation. This can
be written as

Λρ
τ = exp

(
− i

4
(Mµν)ωµν

)ρ
τ
, (Mµν)ρτ = 2i

(
gρµδντ − gρνδµτ

)
. (8)

Fact: The matrices (Mµν)ρτ satisfy the Lorentz algebra

[(Mµν), (Mαβ)] = 2i
(
gµβMνα + gναMµβ − gµαMνβ − gνβMµα

)
. (9)

Optional: Verify these commutation relations.

2 Action Principle

a.) Consider a scalar field ϕ(x) and its action

S[ϕ] =

∫
d4xL(ϕ(x), ∂µϕ(x)). (10)

The variation of the action is defined as

δS =

∫
d4x
(∂L
∂ϕ

δϕ+
∂L

∂(∂µϕ)
δ(∂µϕ)

)
. (11)

Using integration by parts and neglecting boundary terms show that the action
principle δS = 0 implies the Euler-Lagrange equations

∂µ
∂L

∂(∂µϕ)
=
∂L
∂ϕ

. (12)

b.) Write down the action for the free scalar field and derive the Klein-Gordon
equation as the associated Euler-Lagrange equations.



3 Momentum operator

a.) The 4-momentum operator of the free scalar field Φ(x) with conjugate momentum
Π(x) is defined as

P µ =

∫
d3x′Π(t, ~x′) ∂µ Φ(t, ~x′). (13)

Use the mode expansion for Φ(t, ~x) and Π(t, ~x) to recast this into the form

P µ =
1

2

∫
d3p

1

(2π)3

1

2Ep
pµ
(
a(p)a†(p) + a†(p)a(p)

)
, Ep = +

√
~p2 +m2 = p0.(14)

Hint:
∫
d3x ei(~p·~x) = (2π)3δ(3)(~p).

b.) Use the canonical commutation relations

[a(p), a(p′)†] = (2π)3 2Ep δ
(3)(~p− ~p′) (15)

to show that

[P µ, a†(p)] = pµa†(p), [P µ, a(p)] = −pµa(p). (16)

c.) Starting from (14), use the canonical commutation relations to bring P µ into the
form

P µ =

∫
d3p

1

(2π)3

1

2Ep
pµ
(
a†(p) a(p) +

1

2
(2π)3 2Ep δ

(3)(0)
)
. (17)

Interpret the last term as the divergent vacuum energy.
(Note: What counts in practice is only the energy difference between states. The
divergent vacuum energy is renormalised away by using instead the normal ordered
momentum operator : P µ :.)

4 The Feynman Propagator

The Feynman propagator of a scalar field is defined as

i∆F (x− y) = 〈0|T (Φ(x)Φ(y))|0〉 (18)

= θ(x0 − y0)〈0|Φ(x)Φ(y)|0〉+ θ(y0 − x0)〈0|Φ(y)Φ(x)|0〉. (19)

a.) Show that

〈0|Φ(x)Φ(y)|0〉 =

∫
d3p

(2π)32Ep
e−ip(x−y). (20)



Hint: Plug in the mode expansion for Φ(x) and Φ(y) and use that 〈0|a(p)a†(p)|0〉 =
〈0|[a(p), a†(p)]|0〉 as well as the commutation relations for the a(p), a†(p).

Conclude that

i∆F (x− y) =

∫
d3p

(2π)32Ep
ei~p (~x−~y)

(
θ(x0 − y0)e−iEp(x0−y0) + θ(y0 − x0)e−iEp(y0−x0)

)
.(21)

b.) Now consider the integral

I :=

∫
dp0 e−ip

0(x0−y0)

(p0)2 − ~p2 −m2 + iε
(22)

in the limit ε→ 0 from above.

Complete the square to show that the integrand vanishes if

(p0)2 =
(√

~p2 +m2 − i

2
ε
)2

+
ε2

4
. (23)

Draw the two solutions for p0 in the complex plane, with the real axis identified
with the p0-direction, neglecting the term quadratic in ε and taking ε > 0. Use this
pole structure to convert the integral into a contour integral in the complex plane
and show that

I =
2π

i

( 1

2Ep
θ(x0 − y0)e−iEp(x0−y0) +

2πi

2Ep
θ(y0 − x0)e+iEp(x0−y0)

)
, (24)

where Ep = +
√
~p2 +m2.

Hint: The two cases appear because one has to close the contour either in the upper
or the lower plane.

Use this result to deduce the famous representation of the Feynman propagator

i∆F (x− y) = i

∫
d4p

(2π)4

e−ip(x−y)

p2 −m2 + iε
. (25)


