Neutrinooszillationen für Sonnenneutrinos

Referent: Alexander Bien Seminar: Schlüsselexperimente der Teilchenphysik Datum: Freitag, 29. Juni 2007 Betreuerin: Dr. Stephanie Hansmann-Menzemer

Inhalt

- Produktion von Sonnenneutrinos
- Das Homestake-Experiment
- Weitere Sonnenneutrino-Experimente
- Neutrinooszillationen
- Das SNO-Experiment
- Blick in die Zukunft
- Zusammenfassung

Produktion von Sonnenneutrinos

Neutrinospektrum der Sonne:

Wichtig: In der Sonne werden nur Elektron-Neutrinos produziert Und: Spektrum theoretisch berechnet

29.06.2007

Sonnenneutrinos

Das Homestake-Experiment

Einige Daten

- Homestake-Goldmine in South-Dakota, USA
- 1,5 Kilometer unter der Erde (vermindert Untergrund)
- Tank mit 610 Tonnen C₂Cl₄ (Perchlorethylen)
- Inbetriebnahme 1967, ab
 1970 ununterbrochner Betrieb
- Ein Messdurchlauf: 60 Tage
- Leiter: Raymond Davis
- Ausbeute sehr gering, insgesamt nur 875
 Ereignisse

Raymond Davis

Messprinzip

- Nachweis der Neutrinos: radiochemisch
- $v_e + {}^{37}Cl \rightarrow {}^{37}Ar + e^{-}$
- Nur Elektronneutrinos können nachgewiesen werden
- Energieschwelle f
 ür die Reaktion: 814 keV
- → Nur Nachweis von ⁷Be-, pep- und ⁸B-Neutrinos
- Alle 60 Tage Herausspülen der Argon-Atome mit Helium
- \rightarrow keine Echtzeitmessung
- Messung über Zerfall (τ = 35 Tage)
- \rightarrow Zahl der Neutrinoreaktionen und Neutrino-Fluss
- Ausbeute: etwa 10 Argon-Atome pro Monat, einige davon schon wieder zerfallen

Warum ist die Ausbeute so klein?

Beispielrechnung

- Volumen 4•10⁵ Liter, Dichte 1,5 g cm⁻³
- Totaler Energiefluss der Sonne: 8,8•10¹¹ MeV s⁻¹ cm⁻²
- 10% der Energie in Neutrinos, mittlere Energie: 1MeV
- Nur 1% kann Reaktion induzieren
- Wirkungsquerschnitt f
 ür ³⁷Cl: 10⁻⁴⁵ cm² = 10⁻⁶ fb
- $N_{Ar} = (\Phi_v \cdot V \cdot \rho \cdot N_A \cdot \sigma) / M_{mol}$
- Ergebnis: 60 Atome pro Jahr
- Umgekehrt Berechnung von Φ_v aus N_{Ar}

Ergebnis des Homestake-Experiments

- Mittwelwert: ca. 2,5 SNU
- 1 SNU = 1 Reaktion / 10³⁶ Atome / s
- Aus solarem Standardmodell erwartet: (7,6 ± 1,2) SNU
- Nur (30 ± 7)% vom SSM-Wert

Weitere Sonnennneutrino-Experimente Kamiokande und Super-Kamiokande

Sonnenneutrinos

- In der Kamioka-Mine in Japan
- Leiter: Masatoshi Koshiba (Universität Tokio)
- Kamiokande (1986 1995): 2140 Tonnen Wasser
- Super-Kamiokande: 50000 Tonnen Wasser
- Nachweis: $v_x + e^- \rightarrow v_x + e^-$ (elastischer Stoß)
- Nur geringe Sensitivität für v_{μ} und v_{τ}
- Elektron nach Stoß: fast Lichtgeschwindigkeit
- Aussendung von Cherenkov-Licht, richtungsempfindlich
- Nachweis über Photomultiplier
- Detektionsschwelle: 5 MeV
- Auch hier: Neutrinodefizit (50% des erwarteten Signals)

Nobel-Preis:

Nobel Prize in Physics 2002 "for pioneering contributions to astrophysics, in particular for the detection of cosmic neutrinos"

Raymond Davis Jr.

Masatoshi Koshiba

Einschub: Cherenkov-Effekt

- Geladenes Teilchen strahlt Lichtkegel ab
- V_{Teilchen} > C_{Medium}
- Öffnungswinkel des "Mach"kegels: sin α = 1/(n• β)
- Damit: $\theta = 90^\circ \alpha$
- Intensität der Beleuchtungsringe \rightarrow Energie
- Rückschluss auf Richtung

GALLEX / GNO

- $v_e + {}^{71}\text{Ga} \rightarrow {}^{71}\text{Ge} + e^-$
- 30 Tonnen GaCl₃ HCl Lsg.
- pp-Neutrinos
- Spülen mit 2000 m³ N₂
- Nachweis: Messen des Zerfalls von ⁷¹Ge
- Nur 53% des erwarteten Neutrinoflusses
- Aber: Nachweis von pp-Neutrinos
- Bestätigung von Fusionsprozessen

Resultate der Experimente

- Gemessener Neutrinofluss deutlich zu wenig gegenüber dem solaren Standardmodell
- Messwerte der drei Experimente in sich inkonsistent, ⁸B-v weniger unterdrückt als ⁷Be-v

Zwei Hauptmöglichkeiten:

- Solares Standardmodell ist falsch oder zumindest teilweise fehlerhaft
- Neutrinooszillationen, d.h. Umwandlungen von einem Neutrinoflavour in das andere

Neutrinooszillationen

- Standardmodell: $m_v = 0$, neutral, stabil
- Erweiterung: Dirac-v mit $m_v \neq 0$
- Und: Leptonzahl nicht zu 100% erhalten
- Dann: Neutrinooszillationen

$$\begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix}$$

Flavour-Eigenzustände
definierter Leptonzahl Masseneigenzustände
definierter Masse
Mischungswinkel

Flavoureigenzustände als Superpositionen

$$\nu_e = \nu_1 \cdot \cos \alpha + \nu_2 \cdot \sin \alpha$$

- z. B. aus pp \rightarrow d e⁺ v_e
- Zeitenwicklung durch Massenzustände gegeben

$$\nu_1(t) = \nu_1(0) \cdot e^{-iE_1t} \qquad E_1 = \sqrt{p^2 + m_1^2} \approx p + \frac{m_1^2}{2p}$$
$$\nu_2(t) = \nu_2(0) \cdot e^{-iE_2t} \qquad E_2 = \sqrt{p^2 + m_2^2} \approx p + \frac{m_2^2}{2p}$$

Start bei t = 0 mit v_e, dann Zeitentwicklung

$$\nu_e(t) = \nu_e(0) \cdot \left[\cos^2 \alpha \cdot e^{-iE_1 t} + \sin^2 \alpha \cdot e^{-iE_2 t}\right]$$

Damit ergibt sich dann

$$P(\nu_e \to \nu_e) = 1 - \sin^2(2\alpha) \cdot \sin^2\left(\frac{E_2 - E_1 \cdot t}{2}\right)$$
$$P(\nu_e \to \nu_\mu) = 1 - P(\nu_e \to \nu_e)$$
Massendifferenz

• 2. Wahrscheinlichkeit 0, falls α =0 oder E₁=E₂ (gleiche Massen)

$$\frac{\nu_2}{\nu_1} \frac{\nu_1}{\nu_2} \frac{\nu_1}{\nu_1} \frac{1}{\nu_2} \frac{1}{\nu_1} \frac{1}{\nu_2} \frac{1}{\nu_1} \frac{1}{\nu_2} \frac{1}{\nu_1} \frac{1}{\nu_2} \frac{1}{\nu_1} \frac{1}{\nu_2} \frac{1}{\nu_1} \frac{1}{\nu_2} \frac{1}{\nu_1} \frac{1}{\nu_2} \frac{1}{\nu_$$

Das SNO-Experiment

- Sudbury Neutrino Observatory
- Creighton Nickel-Mine, Sudbury, Kanada
- 6,1 km in der Tiefe
- 1000 Tonnen schweres Wasser
- Abschirmung durch 7000 Tonnen leichtes Wasser
- Cherenkov-Detektor
- Schwellenenergie: 5 MeV (v.a. wegen Untergrund)
 - → ⁸B-Neutrinos

Q.R. Ahmad,¹⁷ R.C. Allen,⁴ T.C. Andersen,⁶ J.D. Anglin,¹⁰ J.C. Barton,^{11,*} E.W. Beier,¹² M. Bercovitch,¹⁰ J. Bigu,⁷ S.D. Biller,¹¹ R.A. Black,¹¹ I. Blevis,⁵ R.J. Boardman,¹¹ J. Boger,³ E. Bonvin,¹⁴ M.G. Boulay,^{9,14} M.G. Bowler,¹¹ T.J. Bowles,⁹ S.J. Brice,^{9,11} M.C. Browne,^{17,9} T.V. Bullard,¹⁷ G. Bühler,⁴ J. Cameron,¹¹ Y.D. Chan,⁸ H.H. Chen,^{4,†} M. Chen,¹⁴ X. Chen,^{8,11} B.T. Cleveland,¹¹ E.T.H. Clifford,¹⁴ J.H.M. Cowan,⁷ D.F. Cowen,¹² G.A. Cox,¹⁷ X. Dai,¹¹ F. Dalnoki-Veress,⁵ W.F. Davidson,¹⁰ P.J. Doe,^{17,9,4} G. Doucas,¹¹ M.R. Dragowsky,^{9,8} C.A. Duba,¹⁷ F.A. Duncan,¹⁴ M. Dunford,¹² J.A. Dunmore,¹¹ E.D. Earle,^{14,1} S.R. Elliott,^{17,9} H.C. Evans,¹⁴ G.T. Ewan,¹⁴ J. Farine,^{7,5} H. Fergani,¹¹ A.P. Ferraris,¹¹ R.J. Ford,¹⁴ J.A. Formaggio,¹⁷ M.M. Fowler,⁹ K. Frame,¹¹ E.D. Frank,¹² W. Frati,¹² N. Gagnon,^{11,9,8,17} J.V. Germani,¹⁷ S. Gil,² K. Graham,¹⁴ D.R. Grant,⁵ R.L. Hahn,³ A.L. Hallin,¹⁴ E.D. Hallman,⁷ A.S. Hamer,^{9,14} A.A. Hamian,¹⁷ W.B. Handler,¹⁴ R.U. Haq,⁷ C.K. Hargrove,⁵ P.J. Harvey,¹⁴ R. Hazama,¹⁷ K.M. Heeger,¹⁷ W.J. Heintzelman,¹² J. Heise,^{2,9} R.L. Helmer,^{16,2} J.D. Hepburn,¹⁴ H. Heron,¹¹ J. Hewett,⁷ A. Hime,⁹ J.G. Hykawy,⁷ M.C.P. Isaac,⁸ P. Jagam,⁶ N.A. Jelley,¹¹ C. Jillings,¹⁴ G. Jonkmans,^{7,1} K. Kazkaz,¹⁷ P.T. Keener,¹² J.R. Klein,¹² A.B. Knox,¹¹ R.J. Komar,² R. Kouzes,¹³ T. Kutter,² C.C.M. Kyba,¹² J. Law,⁶ I.T. Lawson,⁶ M. Lay,¹¹ H.W. Lee,¹⁴ K.T. Lesko,⁸ J.R. Leslie,¹⁴ I. Levine,⁵ W. Locke,¹¹ S. Luoma,⁷ J. Lyon,¹¹ S. Majerus,¹¹ H.B. Mak,¹⁴ J. Maneira,¹⁴ J. Manor,¹⁷ A.D. Marino,⁸ N. McCauley,^{12,11} D.S. McDonald,¹² A.B. McDonald,^{14,13} K. McFarlane,⁵ G. McGregor,¹¹ R. Meijer Drees,¹⁷ C. Mifflin,⁵ G.G. Miller,⁹ G. Milton,¹ B.A. Moffat,¹⁴ M. Moorhead,¹¹ C.W. Nally,² M.S. Neubauer,¹² F.M. Newcomer,¹² H.S. Ng,² A.J. Noble,^{16,5} E.B. Norman,⁸ V.M. Novikov,⁵ M. O'Neill,⁵ C.E. Okada,⁸ R.W. Ollerhead,⁶ M. Omori,¹¹ J.L. Orrell,¹⁷ S.M. Oser,¹² A.W.P. Poon,^{8,17,2,9} T.J. Radcliffe,¹⁴ A. Roberge,⁷ B.C. Robertson,¹⁴ R.G.H. Robertson,^{17,9} S.S.E. Rosendahl,⁸ J.K. Rowley,³ V.L. Rusu,¹² E. Saettler,⁷ K.K. Schaffer,¹⁷ M.H. Schwendener,⁷ A. Schülke,⁸ H. Seifert,^{7,17,9} M. Shatkay,⁵ J.J. Simpson,⁶ C.J. Sims,¹¹ D. Sinclair,⁵ P. Skensved,¹⁴ A.R. Smith,⁸ M.W.E. Smith,¹⁷ T. Spreitzer,¹² N. Starinsky,⁵ T.D. Steiger,¹⁷ R.G. Stokstad,⁸ L.C. Stonehill,¹⁷ R.S. Storey,^{10,†} B. Sur,^{1,14} R. Tafirout,⁷ N. Tagg,^{6,11} N.W. Tanner,¹¹ R.K. Taplin,¹¹ M. Thorman,¹¹ P.M. Thornewell,¹¹ P.T. Trent,¹¹ Y.I. Tserkovnyak,² R. Van Berg,¹² R.G. Van de Water,^{9,12} C.J. Virtue,⁷ C.E. Waltham,² J.-X. Wang,⁶ D.L. Wark,^{15,11,9} N. West,¹¹ J.B. Wilhelmy,⁹ J.F. Wilkerson,^{17,9} J.R. Wilson,¹¹ P. Wittich,¹² J.M. Wouters,⁹ and M. Yeh³

Nachweisreaktionen und Detektion

- Charged-Current-Reaktion (CC)
- $v_e + d \rightarrow p + p + e^{-}$
- Nachweis: nur v_e
 - 30 Events/Tag erwartet

- Neutral-Current-Reaktion (NC)
- $v_x + d \rightarrow p + n + v_x$
- Sensitiv f
 ür alle 3 Flavours
- Neutron-Einfang: γ-Strahlung
- Streuung an Elektronen
- e⁻ beschleunigt
- Cherenkov-Licht
- 30 Events/Tag erwartet

- Elastic-Scattering-Reaktion (ES)
- $v_x + e^- \rightarrow v_x + e^$
 - genügend Intensität: E_e > 5 MeV
- WQ für ν_µ, ν_τ um Faktor
 7 kleiner als für ν_e

D₂O in sphärischer Acryll-Hülle

- 12 Meter Durchmesser
- Detektion: 9456 Photomultiplier-Röhren

Reduzierung des Untergrundes:

- Stahlkugel mit 17,8 Meter Durchmesser
- Darin: ultra-reines leichtes Wasser
- Nur Vertices innerhalb 5,5-Meter-Kugel beachtet

Viele verschiedene Quellen für Untergrund

²¹⁴Bi und ²⁰⁸TI aus Zerfallsketten von U und Th:

- γ 's erzeugen freie Neutronen durch Spaltung des d → Cherenkov -Licht wie bei NC-Reaktion
- Niederenergetische Cherenkov-Events aus β-Zerfällen

- Zwei unabhängige Messungen:
- Relative U-/Th-Konzentrationen: 10⁻¹⁴ bis 10⁻¹³
- Rate der Untergrund-n-Produktion: ca. 1 Neutron/Tag
- Gesamter Neutron-Untergrund: 12 %

Weitere Untergrundquellen (gering)

- Atmosphärische Neutrinos
- Neutrinos aus kosmischer Strahlung
- Neutrinos aus Kernreaktoren

Analyse der Daten und Ergebnisse

Trennung der drei Reaktionen durch drei Verteilungen:

Aus

- gemessenen Daten,
- Monte-Carlo-Vorhersagen f
 ür CC, NC, ES und
- Standard-Neutrino-Spektrum (Verteilung c)

Ergebnisse für den Neutrinofluss.

Trennung von CC und NC erfolgt vorwiegend über Verteilung c) Separation von ES über Verteilung a) Alle Werte in Einheiten von 10⁶ cm⁻² s⁻¹

$$\begin{split} \phi_{\rm CC}^{\rm SNO} &= 1.76^{+0.06}_{-0.05}({\rm stat.})^{+0.09}_{-0.09} \ ({\rm syst.}) \\ \phi_{\rm ES}^{\rm SNO} &= 2.39^{+0.24}_{-0.23}({\rm stat.})^{+0.12}_{-0.12} \ ({\rm syst.}) \\ \phi_{\rm NC}^{\rm SNO} &= 5.09^{+0.44}_{-0.43}({\rm stat.})^{+0.46}_{-0.43} \ ({\rm syst.}) \end{split}$$

 $\phi_e = 1.76^{+0.05}_{-0.05}(\text{stat.})^{+0.09}_{-0.09} \text{ (syst.)}$ $\phi_{\mu\tau} = 3.41^{+0.45}_{-0.45}(\text{stat.})^{+0.48}_{-0.45} \text{ (syst.)}$

- Nun: Ausklammern von Verteilung c)
- \rightarrow Unabhängig von Spektrum aus SSM
- Aber: Schlechtere Trennung von CC- und NC-Events

$$\phi_{\rm NC}^{\rm SNO} = 6.42^{+1.57}_{-1.57} (\text{stat.})^{+0.55}_{-0.58} (\text{syst.})$$

SSM-Vorhersage f
ür ⁸B-Neutrinos: 5,05

Ergebnis:

- B-Neutrinos unterliegen Flavour-Oszillationen
- Gesamtneutrinofluss aus NC-Reaktion stimmt in den Fehlergrenzen mit dem SSM-Wert f
 ür ⁸B
 überein

Weiterentwicklung des Experiments

- Zusatz: 2 Tonnen NaCl pro 1000 Tonnen D₂O
- Höhere Effizienz beim Neutroneinfang (von Cl) 30% → 80%
- Höhere Sensitivität, genauere Untergrundbestimmung

- Größere Isotropie der Cherenkov-Strahlung bei dieser NC-Reaktion im Vergleich zur ersten und auch zu CC und ES
- Gute statistische Trennung der Reaktionen
- Trennung unabhängig von Annahmen bzgl. des Energiespektrums und des SSM
- → statt Verteilung c) (Energieverteilung) benutze Isotropie
- Unabhängiges Energiespektrum für die Reaktionen
- Erwartung: Genauerer Wert f
 ür NC-Reaktion

Ergebnisse (in 10⁶ cm⁻² s⁻¹)

Werte für Mischungsparameter in 2-Flavour-Modell: $\alpha = (32,5 \pm 2,4)^{\circ}$ $\Delta m^2 = (7,1 \pm 0,9) \cdot 10^{-5} eV^2$

Blick in die Zukunft: BOREXINO

- Messbeginn: 16. Mai 2007
- 300 t flüssiges
 Szintillatormaterial
- Nachweis: ES
- Messung des niederenergetischen Neutrinospektrums
- Überprüfung des SSM und der Oszillationsmodelle
- Echtzeitmessungen

Zusammenfassung

- Großteil der Sonnenneutrinos aus pp-Zyklus
- Pionierexperiment: Homestake
- Homestake, Superkamiokande, Gallex: Neutrinofluss zu klein gegenüber SSM
- SNO: Voller Nachweis auch für v_{μ} und v_{τ}
- Erste Evidenz f
 ür Oszillationen bei Sonnenneutrinos
- Borexino: Überprüfung des SSM für niedrige Energien
- Heute: Nachweis der Oszillationen bei atmosphärischen, Reaktor- und Beschleuniger-Neutrinos

Vielen Dank für die Aufmerksamkeit!

Fragen ???

Literaturverzeichnis

- http://www.pi1.physik.uni-erlangen.de/~katz/ws06/atp/talks/tr/TR.pdf
- http://iktp.tu-dresden.de/Home/Seminare/HS2005_6/posselt.pdf
- http://nobelprize.org/nobel_prizes/physics/laureates/2002/index.html
- http://www.mps.mpg.de/images/aktuelles/events/event_20061109/ihy_logo_xl.jpg
- http://www.mps.mpg.de/events/2007ihy/dokumente/vortraege/vortrag_hampel.pdf
- http://www-ap.gsi.de/bosch/Schluesselexperimente%2011-13.pdf
- http://www.mpi-hd.mpg.de/nuastro/Educ/Hardy/bilder/spektrum.jpg
- http://www.pbs.org/wgbh/nova/neutrino/images/dete-homestake.jpg
- http://www.sas.upenn.edu/home/assets/img/news/davis2.jpg
- http://wwwlapp.in2p3.fr/neutrinos/neutimg/nexp/homestake.gif
- http://smithers.physnet2.uni-hamburg.de/archive/THESIS/J.Schuessler/sonne3.pdf.gz
- http://www.pi1.physik.uni-erlangen.de/~katz/ws05/atp/talks/bh/BH.pdf
- Donald H. Perkins, Introduction to High Energy Physics, Cambridge University Press
- http://www.physique.usherbrooke.ca/attracte/13-2002/Images/Sno.jpg
- http://www.ipp.ca/Program/SNO_man_on_deck.GIF
- http://www.aip.org/pt/vol-54/iss-8/p13.html
- http://www.sno.phy.queensu.ca/sno/images/publicity_photos/sno3.jpg
- Q. R. Ahmad et al., Phys. Rev. Lett. 89, 011301 (2002)
- S. N. Ahmed et al., Phys. Rev. Lett., 92, 181301 (2004)
- http://www.mpi-hd.mpg.de/nuastro/borexino_de.html
- http://www.phys.vt.edu/~borex/Pictures/Sss%20Before.jpg
- http://www.roro-seiten.de/physik/zerfall/thorium-zerfallsreihe.html
- http://www.roro-seiten.de/physik/zerfall/uran-radium-zerfallsreihe.htm