
7. Elementsynthese und Sternentwicklung

7.1 Kernprozesse in der Sonne

91% H und 9% He (O,C,N,Si,Mg,Fe $\leq 10^{-3}$)

a) Sonnen-Eigenschaften

$$M_S = 1.989 \cdot 10^{30} \text{ kg}$$

 $R_S = 6.96 \cdot 10^8 \text{ m}$

$$V_s = 1.3 \cdot 10^{27} \text{m}^3$$

$$\overline{\rho}_{S} = 1.41 \, \text{kg/dm}^{3}$$
 (½ von Erde)

$$= \frac{L_{S}}{4\pi r_{SF}^{2}} = 1.36 \cdot 10^{3} \text{ W/m}^{2}$$

$$L_{\rm S} = 3.85 \cdot 10^{26} \, \rm W$$

Massenabnahme $\frac{dM_S}{dt} = 4.2 \cdot 10^9 \text{ kg/s}$

$$\Delta M_{\rm S} (5 \cdot 10^9 \,\mathrm{a}) \approx 3.4 \cdot 10^{-4} M_{\rm S}$$

Oberflächen-Temperatur

Unter Annahme, dass Sonne ein schwarzer Körper ist lässt sich aus Strahlungsleistung mit Stefan-Boltzmann Gesetz die Oberflächen-Temperatur der Sonne berechnen:

Temperatur im Innern der Sonne

Betrachte Sonne als Kugel der Masse M und Radius R im Hydrostatischen Gleichgewicht. Es gilt für die Radiale Druckänderung dP/dr:

Der Gesamtdruck ist unter Vernachlässigung des Strahlungsdrucks gleich dem Gasdruck P_G:

Bei 10^6 K ist Wasserstoff im innern vollständig ionisiert (Plasma): $\overline{m} = 1/2(m_p + m_e) \approx 0.5 \cdot m_p$

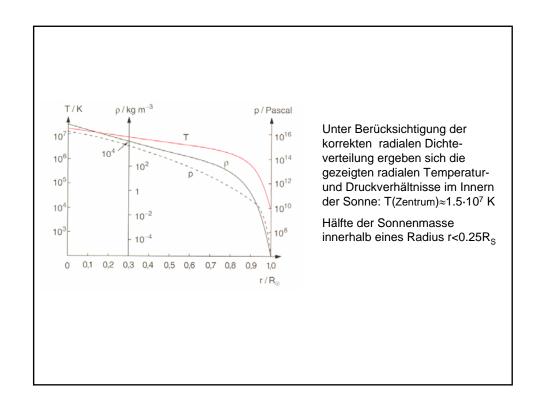
Setzt man ρ =const. kann man den Druck im Zentrum der Sonne bestimmen:

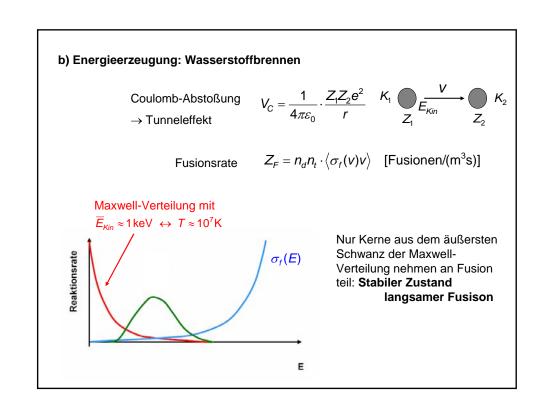
Die mittlere Temperatur T im Inneren der Sonne ergibt sich dann mit $\rho=\overline{\rho}_{\rm S}$ zu

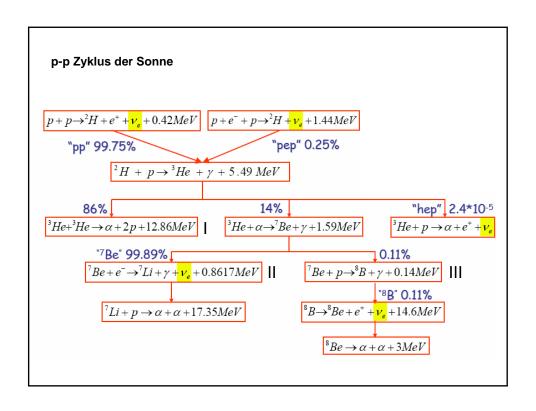
$$\frac{dW}{dt} = 4\pi R_{\rm S}^2 \sigma \cdot T^4$$

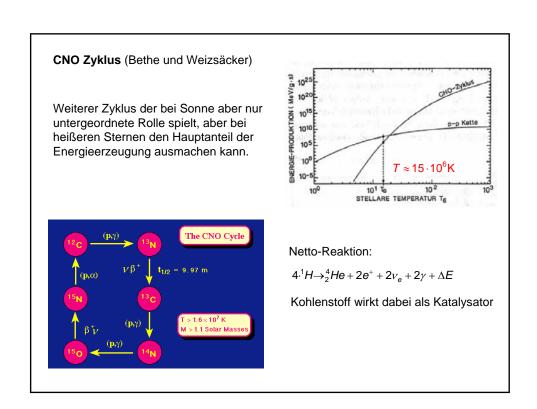
$$T_{eff} = 5770 \, \text{K}$$

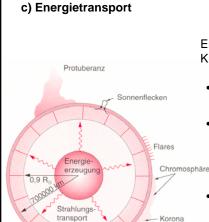
$$\frac{dP}{dr} = -\rho(r) \frac{GM(r)}{r^2}$$


$$P_{\rm G} = \rho \frac{kT}{\overline{m}}$$


 \overline{m} = Masse der Gasteilchen


$$P_{\rm C} \approx 2.5 \cdot 10^{14} \, {\rm Pa}$$

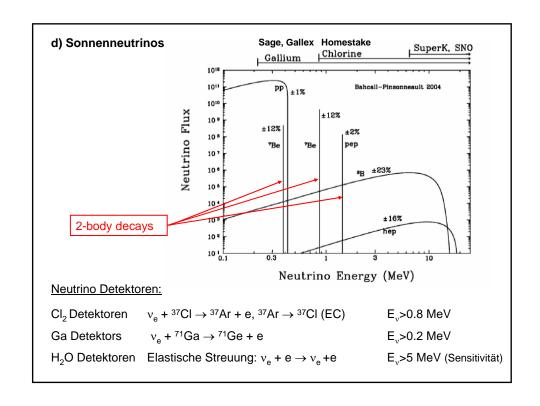

Genaue Rechnungen liefern um Faktor 100 größeren Druck

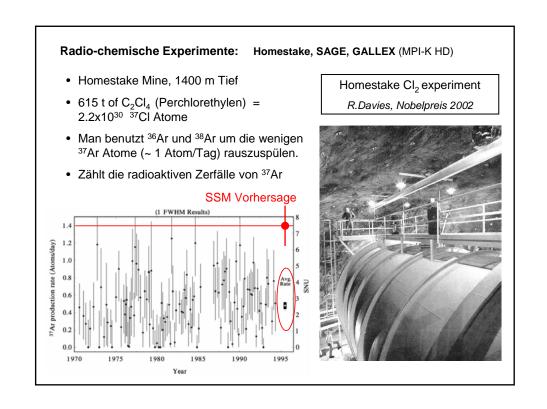

$$\overline{T}_{\rm S} \approx 6 \cdot 10^6 \, \rm K$$

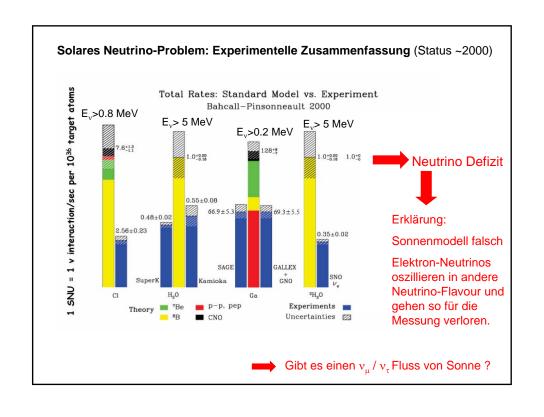
Photosphäre

Konvektion

Energieerzeugung im wesentlichen innerhalb Kugel mit Radius r < $0.25R_S \rightarrow Energietransport$

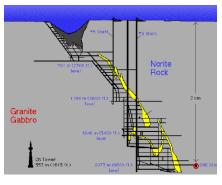

- Wärmeleitung im Innern der Sonne vernachlässigbar
- Konvektion spielt bei Sonne nur im Außenbereich eine Rolle: r = 0.84 ... 0.98 R_s

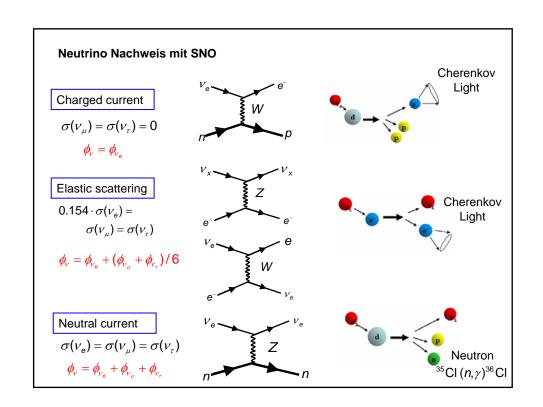

Typische Transportzeiten durch Schicht mit 105 km Dicke: 55 h

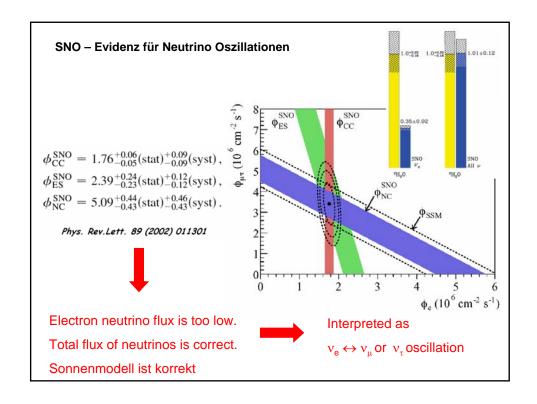

 Im überwiegenden Teil der Sonne (r<0.84R_s) wird Energie durch Strahlung transportiert.

Photonen $\rightarrow e^+e^- \rightarrow Bremstrahlung d.h.$ Strahlungstransport ist nicht geradlinig

- → Diffusion:
- → typ. Transportzeiten ~10⁷ Jahre.






Sudbury Neutrino Observatory (SNO) \rightarrow Gesamter Neutrinofluss von Sonne

- 6 m radius transparent acrylic vessel
- 1000 t of heavy water (D₂O)
- 9456 inward looking photo multipliers
- Add 2 t of NaCl to detect neutrons

7.2 Fusion und Elementsynthese in massereichen Sternen

Wasserstoffbrennen:

ähnlich wie bei leichten Sternen

Heliumbrennen und α-Reaktionen:

Ist Wasserstoff im Innern verbraucht steigt infolge von Kontraktion die Temperatur auf etwa 108 K und der Prozess des Heliumbrennens beginnt.

$$3\alpha$$
 Prozess
$$\begin{cases} ^4He+^4He \rightarrow ^8Be+\gamma \\ ^8Be+^4He \leftrightarrow ^{12}C^* \rightarrow ^{12}C+\gamma \end{cases}$$
 Rückreaktion von C nach Be und He ist 1000mal häufiger

Weitere (α, γ) Reaktionen möglich:

$$^{12}C(\alpha,\gamma)^{16}O(\alpha,\gamma)^{20}$$
 Ne $(\alpha,\gamma)^{24}$ Mg $(\alpha,\gamma)^{28}$ Si

Bei höheren Temperaturen als beim 3α Prozess kann auch ^{14}N (Produkt des CNO Zyklus) zerstört werden:

$$^{14}N(\alpha,\gamma)^{18}F(e^+,\nu_e)^{18}O(\alpha,\gamma)^{22}Ne(\alpha,n)^{25}Mg$$

Liefert freie Neutronen zum Aufbau schwerer Elemente (A > 56) durch s-Prozess im "Roten Riesen"

Kohlenstoffbrennen:

Nach Ende des Heliumbrennens und der α -Reaktionen kann bei Temperaturen von 6...7·10 8 K das Kohlenstoffbrennen einsetzen dessen wichtigste Reaktionen zu 20 Ne führen:

$$^{12}\text{C}+^{12}\text{C} \to ^{23}\text{Na} + p$$
 $^{23}\text{Na}(p,\alpha)^{20}\text{Ne}$ $^{12}\text{C}+^{12}\text{C} \to ^{20}\text{Ne} + \alpha$

Weitere Brennphasen:

Neonbrennen: Bei Energien von 1.5...2·10⁹ K sind thermische Photonen energiereich genug um ²⁰Ne durch Photodesintegration zu zerstören:

20
 Ne(γ, α) 16 O

Durch Folgereaktionen mit α Teilchen

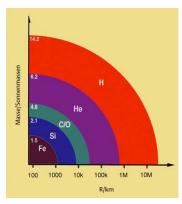
20
Ne $(\alpha, \gamma)^{24}$ Mg $(\alpha, \gamma)^{28}$ Si

Sauerstoffbrennen und Siliziumbrennen folgen bei noch höheren Temp.:

$$^{16}\text{O}+^{16}\text{O} \rightarrow ^{28}\text{S}i + \alpha$$
 bzw. $^{28}\text{S}i+^{28}\text{S}i \rightarrow \begin{cases} ^{56}\text{N}i + \gamma \\ ^{52}\text{Fe} + \alpha \end{cases}$

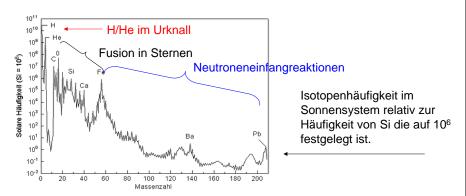
Brennphasen: Stern mit M = 25 M_S

Fusion of	Time to complete	Core temperature (K)	Core density $(kg m^{-3})$
H	$7 \times 10^6 \text{ yr}$	6×10^{7}	5 × 10 ⁴
Не	$5 \times 10^5 \text{ yr}$	2×10^{8}	7×10^{5}
C	600 yr	9×10^{8}	2×10^{8}
Ne	1 yr	1.7×10^{9}	4×10^{9}
O	0.5 yr	2.3×10^{9}	1×10^{10}
Si	1 day	4.1×10^{9}	3×10^{10}


Brenndauern werden mit steigender Temperatur immer kürzer.

Endstadium:

Im Endstadium hat ein massereicher Stern eine Zwiebelschalenstruktur:

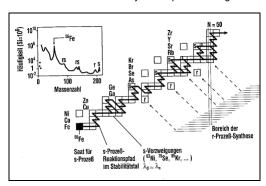

Eisenkern und Schalen in denen noch Fusionsprozesse laufen.

Stark aufgebläht: Roter Riesenstern

7.3 Nukleosynthese schwerer Elemente (A>56)

• Entstehung schwerer Elemente nicht durch Fusion

• Entstehung schwerer Element durch Neutroneneinfangreaktionen: Saatkern fängt Neutonen ein, bis radioaktives Isotop entsteht \rightarrow durch β Zerfall entsteht ein neues Element

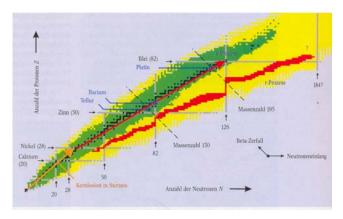

Neutroneneinfang und β Zerfall wiederholen sich so dass sich sukzessive $\,$ immer schwere Elemente bilden.

s-Prozess ("Slow neutron capture")

Neutronenbestrahlung der schweren Elemente

Neuroneneinfänge sind **langsamer** als β Zerfall.

Durch β Zerfall entstehen stabile Kerne \Rightarrow Synthesepfad entlang des Stabilitätstals



Prozess läuft während des Heliumbrennens in "Roten Riesen" ab und erklärt die Entstehung der Elemente bis Z=82 (Kerne mit größerem Z nicht mehr stabil genug um Neutronen anlagern zu können).

http://nuclear-astrophysics.fzk.de/index.php?id=36

r-Prozess ("rapid neutron capture")

- Bei sehr hohen Neutronendichten: mittlere Neutroneneinfangzeit typ. $10^{-4}\,\text{s}$, sehr viel kürzer als Halbwertszeit für β Zerfall
- Synthesepfad etwa 10-20 Masseneinheiten zum Stabilitätstal verschoben
- Entstehung neutronenreicher β -instabiler Kerne, die sich nach ihrer Bildung über eine Reihe von β Zerfällen in stabile Kerne umwandeln.
- Kurze Dauer des r-Prozess und die hohe Neutrondichten deuten daraufhin, dass Prozess wahrscheinlich in Super-Novae abläuft

7.4 Sternenentstehung und -entwicklung

Orion-Nebel (M42) - Hubble ST: nächstgelegenes Sternentstehungsgebiet

Sternentstehung durch Kontraktion riesiger Molekülwolken.

Jeans-Kriterium: $p_{Gas} < p_{grav}$

$$M \ge \frac{2kT}{G\overline{m}} \cdot R$$

 \overline{m} = mittlere Masse der Gasatome

Fragmentation:

Molekülwolken mit Massen von $10^2...10^5 \, \mathrm{M_S}$ sind bei Temperaturen von T = $20...100 \, \mathrm{K}$ instabil.

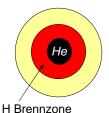
Sie kondensieren zu Protosternen mit Massen M = $0.1 \dots 10^2 M_s$

Stabile Sternphasen (Hauptreihenentwicklung)

Durch die Kontraktion der Molekülwolke steigt der Druck und die Temperatur im Innern des Protosterns. Der Stern geht durch verschiedene Kontraktionsphasen

- → stabile Sternphasen abhängig von Masse des Sterns
- M < 0.1 M_s

Zentraltemperatur zu niedrig um Kernfusion zu zünden: Braune Zwerge


• $0.1 M_S < M < 0.25 M_S$

Zündtemperatur für pp-Zyklus nur in kleinem Zentralbereich, da starke Konvektion existiert kann aber alles H verbrannt werden. Am Ende kollabiert der Stern und wird zu einem **Weissen Zwerg** (erkaltet langsam)

• $0.25 M_S < M < 1.5 M_S$

Zündbedingung für pp-Zyklus in einem Kernbereich (r < 0.3R) erfüllt. Zentrum der Sterne ist radiativ, die Hülle konvektiv (Keine Vermischung zwischen Hülle und Kern)

Es entsteht ein Heliumzentralbereich, um ihn herum eine Wasserstoffbrennschale.

• $M > 1.5 M_s$

Zentraltemperatur hoch genug, dass CNO Zyklus wesentlichen Teil der Energieproduktion übernimmt. Fusion auf kleinen Kernbereich beschränkt (großer Temperaturgradient) der durch Konvektion gut durchmischt wird: Wasserstoff nimmt im Kern gleichmässig ab.

Spätphasen der Sternentwicklung

Leichte Sterne

Sterne mit niedrigen Massen (Sonne) bilden nach der H und der He Brennphase Kerne aus O und C. Aufgrund einer Temperaturerhöhung des Kerns setzt Heliumbrennen in dünner Schale um Kern ein

- → starke Expansion der Sternenhülle "Roter Riese": Sternenwind und Massenverlust.
- 1. Sternmasse ~ M_s (nach Massenverlust):

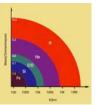
Augrund der niedrigen Temperatur im Zentralbereich kommt es nicht zum Kohlenstoffbrennen. Fusionsprozess stoppt. Stern kühlt ab und kontrahiert.

Für M < M_{Ch} (Chandrasekhar Masse) = 1.4 M_{S} verhindert der Fermidruck der Elektronen das vollständige Kollabieren des Sterns: **Weisser Zwerg**

2. Sternenmasse $> 1.4 M_{\rm S}$ (nach Massenverlust):

Fermidruck (Elektronen) wird überwunden – aufgrund der Kontraktion steigt Temperatur weiter an und Kohlenstoffbrennen zündet: Explosiver Ablauf – C Detonation ohne Reststern ??

Schwere Sterne M > 8M_s

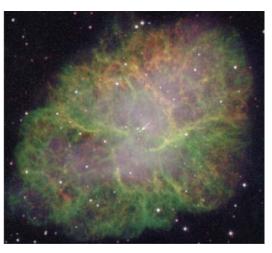

Sterne gehen durch die oben beschriebenen Brennphasen.

Nachdem Stern über keine Brennstoff mehr verfügt kontrahiert Zentralbereich.

Durch Elektroneneinfang entsteht im Inneren des Sterns innerhalb kurzer Zeit (1 s) ein Neutronenstern: $\rho \geq 2 \cdot 10^7 kg/m^3$ (= Atomkerndichte)

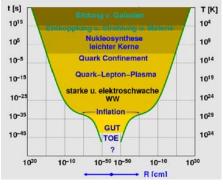
Inkompressible Neutronen/Materie bremst die von außen weiter einfallende Sternmaterie

→ Neutronenkern schwingt zurück → Sckockwelle nach außen



 Schockwelle erreicht Sternenoberfläche und es kommt zum Abstoßen der Sternenhülle und zu einer Supernova (Typ II).

Zurück bleibt ein **Neutronenstern** im Zentrum.


 Schockwelle kommt im Neutronensterninnern zum Stehen. Dann kann durch die Stoßfront hindurch weiter Materie angesammelt werden:

Materie kollabiert zu einem **schwarzen Loch**.

Krebsnebel mit Pulsar (Neutronen-Stern)

7.5 Primordiale Nukleosynthese (Urknall)

Urknall

Beim Freeze-Out

$$\left. \frac{N_n}{N_p} \right|_{t=1s} = \exp\left(\frac{m_n - m_p}{kT}\right) \approx 0.2$$

Quark-Ära: $t=10^{-6}$ s, kT=O(1 GeV)

 Plasma aus Quark, Gluonen Leptonen und Photonen

Quark-Confinement

- Bildung von Mesonen und Nukleonen
- Mesonen zerfallen. Nukleonen und Anti-Nukleonen vernichten sich gegenseitig: kleiner Überschuss an Nukleonen (10⁻⁹, CP Verletzung – kann nicht durch Standardmodell erklärt werden).

Weitere Abkühlung: t=1s, kT=O(1 MeV)

$$n+v \leftrightarrow p+e^-$$
 fallen aus $n+e^+ \leftrightarrow p+\overline{v}$ Gleichgewicht

ν entkoppeln, e+ e- zerstrahlen

Nukleonsynthese: $t \approx 300 \text{ s, kT=O}(0.05 \text{ MeV})$

Zu diesem Zeitpunkt war Photonhintergrund soweit verdünnt, dass keine Photodissoziation des Deuterons ${}^2H + \gamma \rightarrow n + p$ mehr stattfinden konnte.

Damit war die Bildung schwerer Kerne möglich:

 $n + p \rightarrow^2 H + \gamma$

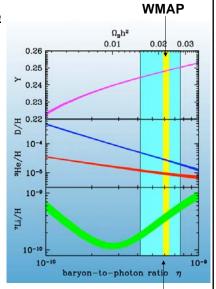
$$^{2}H + n \rightarrow ^{3}H + \gamma$$
 $^{3}H + p \rightarrow ^{4}He + \gamma$
 $^{2}H + p \rightarrow ^{3}He + \gamma$
 $^{3}He + n \rightarrow ^{4}He + \gamma$
 $^{4}He + ^{3}H \rightarrow ^{7}Li + \gamma$ konkurriert mit $^{7}Li + p \rightarrow 2.^{4}He$

Keine stabilen Kerne mit A=5 oder A=8: Bildung von Kernen schwerer als Li erst sehr viel später im Inneren von Sternen.

Vorhersage der Häufigkeit leichter Elemente

→ wichtige Stütze kosmologischer Modelle

Neutron-Proton Verhältnis für t=300s (Nukleonsynthese) ergibt sich aus dem Verhältnis beim Ausfrieren der Neutrinos:


$$r = \frac{N_n(t)}{N_p(t)} = \frac{0.20 \cdot \exp(-t/\tau_n)}{1.20 - 0.20 \cdot \exp(-t/\tau_n)} \approx 0.135$$

Bei Nukleonsynthese werden praktisch alle n in ⁴He eingebaut (m_N=Nukleonm.):

$$M(^{4}He) = \frac{1}{2}N_{n} \cdot 4m_{N}$$

$$M(H) = (N_{p} - N_{n}) \cdot m_{N}$$

$$Y = \frac{M(^{4}He)}{M(^{4}He) + M(H)} = \frac{2N_{n}}{2N_{n} + N_{p} - N_{n}} = \frac{2r}{1+r} \approx 0.24$$

Messwerte:

Messwerte:
$$\frac{P_{Baryon} = (3.0 \pm 1.5) \times 10^{-28} \text{kgm}^{-3}}{\eta = \frac{N_B}{N_{\gamma}}} = (4.0 \pm 2) \times 10^{-10}$$