Problem sheet 9 - Physics V - WS 2006/2007

Due: December 21/22, 2006

Problem 9.1 Form factors (50P)

The mean-square radius for a nucleus with A nucleons is given by $R_{\mathrm{ms}}=\sqrt{\left\langle r^{2}\right\rangle} \approx 0.94 \mathrm{fm} \cdot \sqrt[3]{A}$. For a homogeneous spherical charge density (sharp edges) one obtains $R_{\mathrm{K}}=1.21 \mathrm{fm} \cdot \sqrt[3]{A}$.
a) Electrons with an energy of 750 MeV are scattered off (spinless) ${ }^{40} \mathrm{Ca}$ nuclei. Give the differential crosssection $\mathrm{d} \sigma / \mathrm{s} \Omega$ of this reaction as a function of the scattering angle θ for the following assumptions:
(i) scattering of spinless electrons off pointlike nuclei,
(ii) scattering of spinless electrons off spherical nuclei with a constant charge density (for the radius of the sphere use R_{K}).
(iii) scattering of spin ${ }^{1} / 2$ electrons off pointlike nuclei,
(iv) scattering of spin ${ }^{1} / 2$ electrons off nuclei with a Gaussian charge density $f(r)=\left(a^{2} /(2 \pi)\right)^{3 / 2}$. $\exp \left(-a^{2} r^{2} / 2\right)$ with $a=1 / R_{\mathrm{ms}}$,
(v) scattering of spin ${ }^{1} / 2$ electrons off spherical nuclei with a constant charge density (for the radius of the sphere use R_{K}).
b) Plot the cross-sections obtained in a) separately for (i) to (v), as a function of θ. Use an algebra program like Mathematica or Maple. For the abscissa use $5^{\circ}<\theta<60^{\circ}$, for the ordinate use units of cm^{2} and a logarithmic scale. In a 6th plot show all cross-sections in a single diagram ($5^{\circ}<\theta<60^{\circ}, 10^{-34}<$ $(\mathrm{d} \sigma / \mathrm{d} \Omega)<10^{-23} \mathrm{~cm}^{2}$, use a logarithmic scale for the ordinate). Which of the predicted cross-sections describes the data best (see figure 1)? Explain why?
c) In addition to the elastic electron- ${ }^{40} \mathrm{Ca}$ scattering cross-section, the cross-section for elastic scattering of electrons off ${ }^{48} \mathrm{Ca}$ is shown in figure 1. Estimate the radius of the ${ }^{48} \mathrm{Ca}$ nucleus from the angle of the first minimum. Compare with the expected mean-square radius and R_{K} ! The energy of the electrons is again 750 MeV .

Figure 1: Differential cross-section $\mathrm{d} \sigma / \mathrm{d} \Omega$ of the elastic scattering of electrons off ${ }^{40} \mathrm{Ca}$ and ${ }^{48} \mathrm{Ca}$ nuclei as a function of the scattering angle θ. The cross-section for ${ }^{40} \mathrm{Ca}$ has been scaled up by a factor of 10 ; the one for ${ }^{48} \mathrm{Ca}$ has been multiplied by a factor of 0.1 .

The proton structure as measured in deep inelastic electron scattering off protons is described by the structure function $F_{2}(x) . F_{2}(x)$ can be expressed in terms of the quark density distributions as follows:

$$
F_{2}^{e p}(x)=x\left(\frac{4}{9}(u(x)+\bar{u}(x))+\frac{1}{9}(d(x)+\bar{d}(x))+\frac{1}{9}(s(x)+\bar{s}(x))\right)
$$

where $u(x)$ is the u-quark density and x is the fraction of the proton momentum carried by the u-quarks. $\bar{u}(x)$ is the density of the anti- u - $(\bar{u}$ - $)$ quarks. $d(x)(\bar{d}(x))$ and $s(x)(\bar{s}(x))$ denote the corresponding densities for the (anti-) u - and (anti-) s-quarks. Contributions of heavier quarks are neglected.
a) Rewrite the above equation in terms of valence (u_{v} and d_{v}) and sea quark distributions assuming that the sea quark distributions are the same for all quark and antiquark flavors $\left(u_{\mathrm{s}}(x)=\bar{u}_{\mathrm{s}}(x)=d_{\mathrm{s}}(x)=\bar{d}_{\mathrm{s}}(x)=\right.$ $\left.s_{\mathrm{s}}(x)=\bar{s}_{\mathrm{s}}(x)=: q_{\mathrm{s}}(x)\right)$. In other words, write $F_{2}^{e p}(x)$ as a combination of $u_{\mathrm{v}}(x), d_{\mathrm{v}}(x)$ and $q_{\mathrm{s}}(x)$ only.
b) Express the structure function $F_{2}^{e n}(x)$ for the elastic electron scattering off neutrons in terms of the quark density functions for the proton $(u(x), \bar{u}(x), d(x), \bar{d}(x), s(x)$ and $\bar{s}(x))$ and, in a second step, in terms of the valence and sea quark distributions of the proton $\left(u_{\mathrm{v}}(x), d_{\mathrm{v}}(x)\right.$ and $\left.q_{\mathrm{s}}(x)\right)$. Hint: Think of the isospin symmetry of proton and neutron.
c) Express the structure function $F_{2}^{e N}(x)$ for deep inelastic electron scattering off a isoscalar target (nucleus with same number of protons and neutrons) in terms of the valence and sea quark distributions of the proton $\left(u_{\mathrm{v}}(x), d_{\mathrm{v}}(x)\right.$ and $\left.q_{\mathrm{s}}(x)\right)$.
d) From deep inelastic electron scattering off protons and neutrons one can obtain $F_{2}^{e p}(x)$ and $F_{2}^{e n}(x)$. Use the experimental results

$$
\int_{0}^{1} F_{2}^{e p}(x) \mathrm{d} x=0,18, \quad \int_{0}^{1} F_{2}^{e n}(x) \mathrm{d} x=0,12
$$

to determine the integrals

$$
\int_{0}^{1} x u_{\mathrm{v}}(x) \mathrm{d} x, \quad \int_{0}^{1} x d_{\mathrm{v}}(x) \mathrm{d} x
$$

For this neglect the sea quark content in $F_{2}^{e p}(x)$ and $F_{2}^{e n}(x)$. What does the result imply concerning the number of u and d valence quarks in the proton assuming that the mean momentum fraction carried by an u valence quark is the same as that of a d valence quark?
e) Using the results from part d) determine the fraction of the proton momentum carried by the valence quarks!

