Problem sheet 9 - Physics V - WS 2006/2007

Due: December 21/22, 2006

Problem 9.1 Form factors (50P)

The mean-square radius for a nucleus with A nucleons is given by $R_{\rm ms} = \sqrt{\langle r^2 \rangle} \approx 0.94 \text{ fm} \cdot \sqrt[3]{A}$. For a homogeneous spherical charge density (sharp edges) one obtains $R_{\rm K} = 1.21 \text{ fm} \cdot \sqrt[3]{A}$.

- a) Electrons with an energy of 750 MeV are scattered off (spinless) 40 Ca nuclei. Give the differential crosssection d $\sigma/s\Omega$ of this reaction as a function of the scattering angle θ for the following assumptions:
 - (i) scattering of spinless electrons off pointlike nuclei,
 - (ii) scattering of spinless electrons off spherical nuclei with a constant charge density (for the radius of the sphere use $R_{\rm K}$).
 - (iii) scattering of spin 1/2 electrons off pointlike nuclei,
 - (iv) scattering of spin 1/2 electrons off nuclei with a Gaussian charge density $f(r) = (a^2/(2\pi))^{3/2} \cdot \exp(-a^2r^2/2)$ with $a = 1/R_{\rm ms}$,
 - (v) scattering of spin 1/2 electrons off spherical nuclei with a constant charge density (for the radius of the sphere use $R_{\rm K}$).
- b) Plot the cross-sections obtained in a) separately for (i) to (v), as a function of θ . Use an algebra program like Mathematica or Maple. For the abscissa use $5^{\circ} < \theta < 60^{\circ}$, for the ordinate use units of cm² and a logarithmic scale. In a 6th plot show all cross-sections in a single diagram ($5^{\circ} < \theta < 60^{\circ}$, $10^{-34} < (d\sigma/d\Omega) < 10^{-23}$ cm², use a logarithmic scale for the ordinate). Which of the predicted cross-sections describes the data best (see figure 1)? Explain why?
- c) In addition to the elastic electron-⁴⁰Ca scattering cross-section, the cross-section for elastic scattering of electrons off ⁴⁸Ca is shown in figure 1. Estimate the radius of the ⁴⁸Ca nucleus from the angle of the first minimum. Compare with the expected mean-square radius and $R_{\rm K}$! The energy of the electrons is again 750 MeV.

Figure 1: Differential cross-section $d\sigma/d\Omega$ of the elastic scattering of electrons off ⁴⁰Ca and ⁴⁸Ca nuclei as a function of the scattering angle θ . The cross-section for ⁴⁰Ca has been scaled up by a factor of 10; the one for ⁴⁸Ca has been multiplied by a factor of 0.1.

Problem 9.2 Deep-inelastic scattering – structure functions (50P)

The proton structure as measured in deep inelastic electron scattering off protons is described by the structure function $F_2(x)$. $F_2(x)$ can be expressed in terms of the quark density distributions as follows:

$$F_2^{ep}(x) = x \left(\frac{4}{9} \left(u(x) + \overline{u}(x) \right) + \frac{1}{9} \left(d(x) + \overline{d}(x) \right) + \frac{1}{9} \left(s(x) + \overline{s}(x) \right) \right) ,$$

where u(x) is the *u*-quark density and *x* is the fraction of the proton momentum carried by the *u*-quarks. $\overline{u}(x)$ is the density of the anti-*u*-(\overline{u} -)quarks. d(x) ($\overline{d}(x)$) and s(x) ($\overline{s}(x)$) denote the corresponding densities for the (anti-)*u*- and (anti-)*s*-quarks. Contributions of heavier quarks are neglected.

- a) Rewrite the above equation in terms of valence $(u_v \text{ and } d_v)$ and sea quark distributions assuming that the sea quark distributions are the same for all quark and antiquark flavors $(u_s(x) = \overline{u}_s(x) = d_s(x) = \overline{d}_s(x) = s_s(x) = \overline{s}_s(x) = \overline{s}_s(x) = :q_s(x))$. In other words, write $F_2^{ep}(x)$ as a combination of $u_v(x)$, $d_v(x)$ and $q_s(x)$ only.
- b) Express the structure function $F_2^{en}(x)$ for the elastic electron scattering off neutrons in terms of the quark density functions for the proton $(u(x), \overline{u}(x), d(x), \overline{d}(x), s(x) \text{ and } \overline{s}(x))$ and, in a second step, in terms of the valence and sea quark distributions of the proton $(u_v(x), d_v(x) \text{ and } q_s(x))$. Hint: Think of the isospin symmetry of proton and neutron.
- c) Express the structure function $F_2^{eN}(x)$ for deep inelastic electron scattering off a isoscalar target (nucleus with same number of protons and neutrons) in terms of the valence and sea quark distributions of the proton $(u_v(x), d_v(x) \text{ and } q_s(x))$.
- d) From deep inelastic electron scattering off protons and neutrons one can obtain $F_2^{ep}(x)$ and $F_2^{en}(x)$. Use the experimental results

$$\int_{0}^{1} F_{2}^{ep}(x) \, \mathrm{d}x = 0.18 \,, \qquad \int_{0}^{1} F_{2}^{en}(x) \, \mathrm{d}x = 0.12$$

to determine the integrals

$$\int_{0}^{1} x u_{\mathbf{v}}(x) \, \mathrm{d}x \, , \qquad \int_{0}^{1} x d_{\mathbf{v}}(x) \, \mathrm{d}x \, .$$

For this neglect the sea quark content in $F_2^{ep}(x)$ and $F_2^{en}(x)$. What does the result imply concerning the number of u and d valence quarks in the proton assuming that the mean momentum fraction carried by an u valence quark is the same as that of a d valence quark?

e) Using the results from part d) determine the fraction of the proton momentum carried by the valence quarks!