Name:

 Group:
Problem Sheet No 3 - Physik V - WS 2006/07

Due: (Thu 9th / Fri 10th) of November 2006 in the "Gruppenunterricht"

Problem 3.1 (30 Points) Solar Neutrinos

A historical experiment in a gold mine in South Dakota has been carried out to detect solar neutrinos via the reaction

$$
\nu+{ }^{37} \mathrm{Cl} \rightarrow{ }^{37} \mathrm{Ar}+e^{-} .
$$

The detector contained $4 \cdot 10^{5}$ liters of $C_{2} C l_{4}$ ("tetra-chlorethylene") with a density of $1.5 \mathrm{~g} \mathrm{~cm}^{-3}$. Estimate how many atoms of ${ }^{37} \mathrm{Ar}$ would be produced per day, making the following assumptions:
a) The solar energy flux is $8.8 \cdot 10^{11} \mathrm{MeV} \mathrm{s}^{-1} \mathrm{~cm}^{-2}$. b) 10% of the sun's thermonuclear energy appears in neutrinos of mean energy 1 MeV . c) 1% of all neutrinos are energetic enough to induce the above reaction. d) The cross section per ${ }^{37} \mathrm{Cl}$ nucleus for "active" neutrinos is $10^{-45} \mathrm{~cm}^{2}$. e) The isotopic abundance of ${ }^{37} \mathrm{Cl}$ is 25%.

Problem 3.2 (20 Points) "3-Kelvin" Photons

A lonesome photon of the " 3 K (elvin) background radiation", a relic of the so called "Big Bang", travels through space. Its energy is $25 \cdot 10^{-5} \mathrm{eV}$. After some million years, it meets another lonesome particle, a cosmic proton. They collide "head on" (i.e. under an angle of 180°) and produce one more particle, a neutral pion $\left(\pi^{0}\right)$.

What is the minimal energy the proton needs in order to generate the pion? (The reaction is $\gamma+p \rightarrow p+\pi^{0} ;$ assume $E_{p}=p_{p}$)

Problem 3.3 (25 Points) Annihilation Cross Section

The (angular) differential cross section for the annihilation reaction $e^{+}+e^{-} \rightarrow \mu^{+}+\mu^{-}$is, in natural units,

$$
\frac{d \sigma}{d \Omega}=\frac{\alpha^{2}}{4 s}\left(1+\cos ^{2} \theta\right)
$$

Assume that the reaction takes place in a storage ring where electrons with an energy of 5.5 GeV collide "head on" with positrons of the same energy (neglect the particles' rest masses). In the above formula, s denotes the squared centre-of-mass energy $E_{C M}^{2}$, and θ is the polar angle of the μ^{-}w.r.t. the incoming electron.
a) Calculate the total cross section for the annihilation reaction by integrating over the full solid angle.
b) What is the corresponding cross section expressed in cm^{2} or barns? $\left(1 \mathrm{~b}=100 \mathrm{fm}^{2}\right)$
c) In this annihilation reaction, an intermediate "virtual" photon is created. Write down its four - momentum components and estimate its lifetime.

Problem 3.4 (25 Points) Mass Reconstruction

The figure attached shows the reaction

$$
\pi^{-}+p \rightarrow \Lambda+V^{0}
$$

where " V^{0} " means an "invisible" and (yet) unidentified neutral particle which decays into two charged particles.

The charged daughter particles are identified as a π^{+}with a momentum of 400 MeV , and a π^{-}with a momentum of 1027 MeV . The opening angle between the pions is measured as 40.3°.

Calculate the rest mass of the mother particle. Which particle has most likely decayed, given a measurement uncertainty on the mass determination of roughly 10% ?

Abbildung 1: V-zero decays

