

Neutrino source	Experiment	Comments
Solar neutrinos	Radio-chemical exp.: Homestake CI exp., GALLEX, SAGE,	First observation of "neutrino disappearance" dates more than 20 years ago: "Solar neutrino problem"
	Water experiments: (Super)Kamiokande, IMB	Confirm disappearance o solar neutrinos
	Water++: SNO	Ultimate "solar neutrino experiment": proves the oscillation of solar v
Atmospheric neutrinos	(Super)Kamiokande	Oscillation signal
Accelerator	LSDN Not confirmed	Much disputed signal
	К2К	Clear disappearance signal
Reactor	KamLAND, CHOOZ	Clear disappearance signal

Neutrino oscillation in matter:

$$\Delta m_M^2 = 2\sqrt{2} G_F N_e E$$

$$\mathbf{M}^2 \to \mathbf{M}_M^2 = \frac{\Delta m^2}{2} \begin{pmatrix} -\cos 2\theta & \sin 2\theta \\ \sin 2\theta & \cos 2\theta \end{pmatrix} + \begin{pmatrix} \Delta m_M^2 & 0 \\ 0 & -\Delta m_M^2 \end{pmatrix}$$
Go the opposite direction...
one define the matter mass eigenstates which one obtains by diagonalizing \mathbf{M}_M^2

$$\begin{pmatrix} v_{1m} \\ v_{2m} \end{pmatrix} = \mathbf{U}_{\theta_m}^T \begin{pmatrix} v_e \\ v_\alpha \end{pmatrix}$$

$$\mathbf{U}_{\theta_m}^T \mathbf{M}^2 \mathbf{U}_{\theta_m} = \frac{1}{2} (m_1^2 + m_1^2) \begin{pmatrix} -\Delta_m & 0 \\ 0 & \Delta_m \end{pmatrix}$$

$$\Delta_m = \Delta m^2 \sqrt{(a - \cos 2\theta)^2 + \sin^2 2\theta}$$

$$a = 2\sqrt{2} EG_F N_e / \Delta m^2$$

