II. Pre-requisites

1. Relativistic kinematics
2. Wave description of free particles
3. Scattering matrix and transition amplitudes
4. Cross section and phase space
5. Decay width, lifetimes and Dalitz plots

1. Relativistic kinematics

1.1 Notations

- 4-vector
- contra-variant form $\quad x^{\mu}=\left(x^{0}, \vec{x}\right)=(t, \vec{x}) \quad p^{\mu}=\left(p^{0}, \vec{p}\right)=(E, \vec{p})$
- covariant form

$$
x_{\mu}=\left(x^{0},-\vec{x}\right)=(t,-\vec{x}) \quad p_{\mu}=\left(p^{0},-\vec{p}\right)=(E,-\vec{p})
$$

- Metric tensor

$$
g^{\mu \nu}=g_{\mu \nu}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) \quad \begin{aligned}
& x_{\mu}=g_{\mu \nu} x^{\nu} \\
& x^{\mu}=g^{\mu \nu} x_{v}
\end{aligned}
$$

- Derivative operator $\quad \partial^{\mu}=\frac{\partial}{\partial x_{\mu}}=\left(\frac{\partial}{\partial t},-\vec{\nabla}\right)$
- Scalar product

$$
\partial_{\mu}=\frac{\partial}{\partial x^{\mu}}=\left(\frac{\partial}{\partial t}, \vec{\nabla}\right)
$$

$$
a b=a_{\mu} b^{\mu}=g_{\mu \nu} a^{\nu} b^{\mu}=\left(a^{0} b^{0}-\vec{a} \cdot \vec{b}\right)
$$

1.2 Lorentz invariants

Lorentz transformation:
$p^{\prime}=\left\{\begin{array}{l}\left(\begin{array}{c}E^{\prime} \\ \vec{p}_{l}^{\prime} \\ \vec{p}_{t}^{\prime}=\vec{p}_{t} \\ -\beta \gamma \\ \hline\end{array}\right)=\left(\begin{array}{cc}\gamma & -\beta \gamma \\ m_{1}\end{array}\right)\binom{E}{\vec{p}_{l}}\end{array}\right.$
${ }^{\stackrel{\mathbf{t}^{\prime}}{\boldsymbol{t}}} \beta=\frac{v}{c} \quad \gamma=\left(1-\beta^{2}\right)^{-1 / 2}$

w/r to rest frame: $\beta=\frac{|\vec{p}|}{E} \quad \gamma=\frac{E X}{m^{\prime}}$
moving particle with $p=(E, \vec{p})$
$p^{\prime}=\left\{\begin{array}{l}\binom{E^{\prime}}{\vec{p}_{l}^{\prime}}=\left(\begin{array}{cc}\gamma & -\beta \gamma \\ -\beta \gamma & \gamma\end{array}\right)\binom{E}{\vec{p}_{l}} \\ \vec{p}_{t}^{\prime}=\vec{p}_{t}\end{array}\right.$

Scalar products are invariant under Lorentz transformations: $\quad a^{\prime} b^{\prime}=a b$

Example 1: invariant mass
$p^{2}=p_{\mu} p^{\mu}=E^{2}-\vec{p}^{2}=m^{2}$

Example 2: center-of-mass energy of 2 particle collision
$s=\left(p_{1}+p_{2}\right)^{2}=\left(E_{1}+E_{2}\right)^{2}-\left(\vec{p}_{1}+\vec{p}_{2}\right)^{2}$

Lorentz scalars can only by functions of other Lorentz invariants (scalars).

Examples of Lorentz invariants: $\quad \frac{1}{E} \frac{d \sigma}{d^{3} p}$ and $\mathrm{E} \cdot \Gamma \quad$ Lorentz invariant cross section / decay width

1.3 Mandelstam variables

$$
A+B \rightarrow C+D
$$

What are the Lorentz scalars the cross section can depend on ?
$p_{i} p_{k}$ with $p_{i, k \geq i}=p_{A}, p_{B}, p_{C}, p_{D}$

(unpolarized particles)

Instead of $\mathrm{p}_{\mathrm{i}} \mathrm{p}_{\mathrm{k}}$ use 2 out of the 3 Mandelstam variables

10 combinations
4 constraints
4 constraints
$\rightarrow 2$ independent products

$$
\begin{array}{ll}
s=\left(p_{A}+p_{B}\right)^{2} & s+t+u= \\
t=\left(p_{A}-p_{c}\right)^{2} & m_{A}^{2}+m_{B}^{2}+m_{C}^{2}+m_{D}^{2} \\
u=\left(p_{A}-p_{D}\right)^{2} & \\
\hline
\end{array}
$$

2. Wave description of free particles

2.1 Schrödinger Equation for non-relativistic free particles

$$
i \frac{\partial}{\partial t} \psi=-\frac{1}{2 m} \nabla^{2} \psi
$$

$$
\begin{array}{ll}
\text { Solution for energy } \quad E=\frac{p^{2}}{2 m} \\
\psi(\vec{r}, t)=\frac{1}{\sqrt{V}} \exp [i(\vec{p} \vec{x}-E t)] \\
\hline
\end{array} \quad \begin{gathered}
\text { Continuity equation: } \\
\rho=|\psi|^{2} \\
\vec{j}=\frac{1}{2 i m}\left(\psi^{*}(\nabla \psi)-\left(\nabla \psi^{*}\right) \psi\right) \\
\frac{\partial \rho}{\partial t}+\nabla \vec{j}=0
\end{gathered}
$$

Schrödinger Eq uses classical E-p relation $E^{2}=p^{2 / 2 m}$ and the replacement

$$
E \rightarrow i \frac{\partial}{\partial t} \quad \text { and } \vec{p}=-\vec{\nabla}
$$

2.2 Klein-Gordon Equation

Starts from relativistic energy relation

$$
\mathrm{E}^{2}=\mathrm{p}^{2}+\mathrm{m}^{2}
$$

Describes relativistic Spin 0 particles

$$
\frac{\partial^{2}}{\partial t^{2}} \phi-\nabla^{2} \phi+m^{2} \phi=0
$$

Solutions for energy values:

$$
\begin{aligned}
& E_{ \pm}= \pm \sqrt{p^{2}+m^{2}} \\
& \phi(\vec{r}, t)=0 \\
& =N \operatorname{Nexp}\left[i\left(\vec{p} \vec{x}-E_{ \pm} t\right)\right]
\end{aligned}
$$

negative E values cannot be ignored as otherwise solutions are incomplete
with $\quad \rho=\left(i \phi^{*} \frac{\partial}{\partial t} \phi-i \phi \frac{\partial}{\partial t} \phi^{*}\right) \quad$ and $\quad \vec{j}=\left(-i \phi^{*} \vec{\nabla} \phi-i \phi \vec{\nabla} \phi^{*}\right)$
\square Continuity equation: $\frac{\partial \rho}{\partial t}+\nabla \vec{j}=0$

For the solution: $\quad \phi(\vec{r}, t)=N \exp \left[i\left(\vec{p} \vec{x}-E_{ \pm} t\right)\right]$

$$
\begin{array}{ll}
\vec{j}=\left(-i \phi^{*} \vec{\nabla} \phi-i \phi \vec{\nabla} \phi^{*}\right) & \vec{j}=2 \vec{p}|N|^{2} \\
\rho=\left(i \phi^{*} \frac{\partial}{\partial t} \phi-i \phi \frac{\partial}{\partial t} \phi^{*}\right) & \rho=2 E|N|^{2}
\end{array}
$$

What are negative probabilities for the $\mathrm{E}<0$ solutions?
Normalization schemes:
$\mathrm{N}=1 / \mathrm{V}(2 \mathrm{EV}) \Rightarrow \quad 1$ particle per unit volume V
$\mathrm{N}=1 / \mathrm{V} \quad \Rightarrow 2 \mathrm{~V}$ particles per unit volume V

2.3 Anti-particles

Dirac interpretation for fermions: Vacuum = sea of occupied neg. E levels

$\mathrm{e}^{+} \mathrm{e}^{-}$annihilation:

Free energy level in the sea. e^{-} drops into the hole and releases

For fermions the negative energy levels are w/o influence as long as they are fully occupied

Missing e^{-}w/ negative energy corresponds to to a positron w/ E>0

Photon conversion for $\mathrm{E}_{\chi}>2 \mathrm{~m}_{\underline{e}}$

Excitation of e^{-}from neg. energy level to pos. level: $\gamma \rightarrow \mathbf{e}^{+} \mathbf{e}^{-}$ energy by photon emission: $E_{\gamma}>2 m_{e}$

Model predicts anti-particles (Discovery of positron by Anderson in 1933)

Feynman Stückelberg interpretation

Solutions with neg. energy propagate backwards in time:

$$
\begin{array}{ll}
E_{+}=E: & \phi_{+}=\frac{1}{\sqrt{2 E}} \exp (i \vec{p} \vec{x}-i E t) \\
E_{-}=-E: & \phi_{-}=\frac{1}{\sqrt{2 E}} \exp (i \vec{p} \vec{x}+i E t)
\end{array}
$$

Solutions describe anti-particles propagating forward in time:

$\left.\begin{array}{l|l}\begin{array}{l}\text { Neg. } \\ \text { probability } \\ \text { density }\end{array} & \rho=2 E|N|^{2} \\ \vec{j}=2 \vec{p}|N|^{2}\end{array}\right\} \times q \Rightarrow \begin{aligned} & J^{0}=q \cdot 2 E|N|^{2} \\ & \vec{j}=q \cdot 2 \vec{p}|N|^{2}\end{aligned} \begin{aligned} & \begin{array}{l}\text { Charge } \\ \text { density / } \\ \text { currents }\end{array}\end{aligned}$

Example

Particle T^{-}with $\mathrm{q}=-\mathrm{e}$ and energy $\mathrm{E}_{-}=-\mathrm{E}<0$

$$
\begin{aligned}
& J^{0}\left(T^{-}\right)=(-e) \cdot 2(-E)|N|^{2}=(+e) \cdot 2(+E)|N|^{2}=J^{0}\left(T^{+}\right) \\
& \vec{J}\left(T^{-}\right)=(-e) \cdot 2 \vec{p}|N|^{2}=(+e) \cdot 2(-\vec{p})|N|^{2}=\vec{J}\left(T^{+}\right)
\end{aligned}
$$

$$
T^{+} \text {with } E\left(T^{+}\right)>0, \vec{p}_{T^{+}}=-\vec{p}_{T^{-}}
$$

Description of creation and annihilation:

- Emission of anti-particle $\overline{\mathrm{T}}$ with $\mathrm{p}^{\mu}=(\mathbf{E}, \mathbf{p}) \Leftrightarrow$ absorption of particle T with $p^{\mu}=(-E,-p)$
- Absorption of anti-particle $\bar{\top}$ with $p^{\mu}=(E, p) \Leftrightarrow$ emission of T with $p^{\mu}=(-E,-\mathbf{p})$

3. Scattering matrix and transition amplitude

Scattering process:

$$
\pi p \rightarrow \pi p
$$

Described through quantum numbers of initial and final state:

Scattering operator (S matrix):

$$
\begin{gathered}
|i\rangle \quad \rightarrow \quad\left|i^{\prime}\right\rangle \\
\left|i^{\prime}\right\rangle=\mathbf{S}|i\rangle
\end{gathered}
$$

Measurement selects a specific state f . Probability to find f:

$$
\left\langle f \mid i^{\prime}\right\rangle=\langle f| \mathbf{S}|i\rangle=\mathbf{S}_{f i}
$$

As there is the probability that $\left|i^{\prime}\right\rangle=|i\rangle$ it is useful to introduce the transition operator T

$$
\mathbf{S}=\mathbf{1}+\mathbf{T} \quad \text { with } \quad \mathbf{T}_{\mathrm{fi}}=\langle f| \mathbf{T}|i\rangle
$$

Instead of T_{fi}, conventionally one uses the transition or scattering amplitude M_{fi}

Feynman rules for calculation
Transition rate per unit volume:

$$
\begin{gathered}
W_{f i}=\frac{\left|T_{f i}\right|^{2}}{T \cdot V}=\frac{1}{T \cdot V}(2 \pi)^{8}\left(N_{A} N_{B} N_{C} N_{D}\right)^{2}\left[\delta^{4}\left(p_{A}+p_{B}-p_{C}-p_{D}\right)\right]^{2}\left|M_{f i}\right|^{2} \\
{\left[\delta^{4}\left(p_{A}+p_{B}-p_{C}-p_{D}\right)\right]^{2}=\frac{V T}{(2 \pi)^{4}} \delta^{4}\left(p_{A}+p_{B}-p_{C}-p_{D}\right)} \\
=(2 \pi)^{4} \frac{1}{V^{4}} \delta^{4}\left(p_{A}+p_{B}-p_{C}-p_{D}\right)\left|M_{f i}\right|^{2}
\end{gathered}
$$

Unitarity of S-Matrix

S matrix or S operator is unitary:

Where the matrix elements of the adjoint operator are defined in the usual way

$$
\begin{gathered}
\mathbf{S S}^{+}=\mathbf{S}^{+} \mathbf{S}=\mathbf{1} \\
\mathbf{S}=\mathbf{S}^{-1} \\
S_{f i}^{*}=S_{i f}^{+}
\end{gathered}
$$

One finds for the states li'>

$$
\left\langle i^{\prime} \mid i^{\prime}\right\rangle=\langle i| \mathbf{S}^{+} \mathbf{S}|i\rangle=\langle i \mid i\rangle
$$

> | Unitarity: |
| :--- |
| Conservation of the probability in the scattering process: |
| What goes in, should also go out !! |

