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II. Pre-requisites

1. Relativistic kinematics

2. Wave description of free particles

3. Scattering matrix and transition amplitudes

4. Cross section and phase space

5. Decay width, lifetimes and Dalitz plots

1. Relativistic kinematics

1.1 Notations
4-vector

• contra-variant form

• covariant form

• Metric tensor

• Derivative operator

• Scalar product
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1.2 Lorentz invariants
Lorentz transformation:
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Scalar products are invariant under Lorentz transformations:  abba =′′

Example 1: invariant mass
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Example 2: center-of-mass energy of 
2 particle collision
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Lorentz scalars can only by functions of other Lorentz invariants (scalars).

Examples of Lorentz invariants: Γ⋅E   and    1
3pd
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σ Lorentz invariant cross 
section / decay width
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1.3 Mandelstam variables
C

D
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DCBA +→+

(unpolarized particles)

What are the Lorentz scalars the 
cross section can depend on ?
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4 constraints                       
4-mom. conservation: 4 constraints 

2 independent products
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Instead of pipk use 2 out 
of the 3 Mandelstam 
variables

10 combinations
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2.1 Schrödinger Equation for non-relativistic free particles

Solution for energy
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Continuity equation: 

Schrödinger Eq uses classical E-p 
relation E2=p2/2m and the replacement ∇−=

∂
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2. Wave description of free particles

2.2 Klein-Gordon Equation

Starts from relativistic energy relation 
E2=p2+m2:

Describes relativistic Spin 0 particles 
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Solutions for energy values:

negative E values cannot be 
ignored as otherwise 
solutions are incomplete
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For the solution:

What are negative probabilities 
for the E < 0 solutions ? 

Normalization schemes:

N = 1/√(2EV)  ⇒ 1 particle per unit volume V

N = 1/√V         ⇒ 2E particles per unit volume V

2.3 Anti-particles
Dirac interpretation for fermions:

2me

E

0

Vacuum = sea of occupied neg. E levels

For fermions the negative energy levels    
are w/o influence as long as they are fully 
occupied

e+e− annihilation:

Free energy level in the sea. e−

drops into the hole and releases 
energy by photon emission: Eγ > 2me

Missing e− w/ negative energy 
corresponds to to a positron w/ E>0 

Photon conversion for Eγ > 2me

Excitation of e− from neg. energy 
level to pos. level: γ → e+e−

Model predicts anti-particles (Discovery of positron by Anderson in 1933)
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Discovery of positron

Feynman Stückelberg interpretation
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Solutions with neg. energy 
propagate backwards in time:

Solutions describe anti-particles propagating forward in time:
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currents
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Example

Particle T− with q= −e and energy E− = −E < 0 

)()(2)(2)()(

)()(2)()(2)()(
22

0220

+−

+−

=−⋅+=⋅−=

=+⋅+=−⋅−=

TJNpeNpeTJ

TJNEeNEeTJ
rrrr

−+ −=>++

TT
ppTET
rr

,0)(    with

Description of creation and annihilation:

• Emission of anti-particle ⎯T with pµ = (E, p) ⇔
absorption of particle T with pµ = (-E, -p) 

• Absorption of anti-particle⎯T with pµ = (E, p) ⇔
emission of T with pµ = (-E, -p) 

3. Scattering matrix and transition amplitude

Scattering process:

pp ππ →
pc

pD

pA

pB

Described through quantum 
numbers of initial and final state: i i ′→

Scattering operator (S matrix): ii S=′

Measurement selects a specific state f. 
Probability to find f: fiifif SS ==′

As there is the probability that it is useful to introduce the 

transition operator T 

ii =′

if TT1S =+= fiT   with
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Instead of Tfi , conventionally one uses the transition or scattering amplitude Mfi

fiDCBADCBAfi MppppNNNNiT ⋅−−+⋅−= )()2( 44 δπ

normalization:                       
Nk=1/√V → 2E particles/V

4-momentum conservation

Transition rate per unit volume:
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Feynman rules for 
calculation

Unitarity of S-Matrix

S matrix or S operator is unitary: 1SSSS == ++

1−= SS

Where the matrix elements of the adjoint
operator are defined in the usual way

+∗ = iffi SS

iiiiii ==′′ +SSOne finds for the states |i’>

Unitarity:

Conservation of the probability in the scattering process:

What goes in, should also go out !!


