

1. Relativistic kinematics
1.1 Notations
• 4-vector
• contra-variant form $x^{\mu} = (x^{\circ}, \vec{x}) = (t, \vec{x})$ $p^{\mu} = (p^{\circ}, \vec{p}) = (E, \vec{p})$
• covariant form $x_{\mu} = (x^{\circ}, -\vec{x}) = (t, -\vec{x})$ $p_{\mu} = (p^{\circ}, -\vec{p}) = (E, -\vec{p})$
• Metric tensor $g^{\mu\nu} = g_{\mu\nu} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \qquad \begin{aligned} x_{\mu} = g_{\mu\nu} x^{\nu} \\ x^{\mu} = g^{\mu\nu} x_{\nu} \end{aligned}$
• Derivative operator $\partial^{\mu} = \frac{\partial}{\partial x_{\mu}} = \left(\frac{\partial}{\partial t}, -\vec{\nabla}\right)$
• Scalar product $\partial_{\mu} = \frac{\partial}{\partial x^{\mu}} = \left(\frac{\partial}{\partial t}, \vec{\nabla}\right)$ $ab = a_{\mu}b^{\mu} = g_{\mu\nu}a^{\nu}b^{\mu} = (a^{0}b^{0} - \vec{a}\cdot\vec{b})$

