

Lepton Properties					
		mass.c ²	lifetime	Lepton number	
 All leptons exist as free particles 	e⁻	511 keV	×	L _e =1	
	μ-	106 MeV	2.2 μs	L _µ =1	
	τ-	1.78 GeV	0.3 ps	L _τ =1	
 Lepton number conservation 	ve	< 3 eV	×	L _e =1	
$\pi^+ \rightarrow \mu^+ V_{\mu}$	ν_{μ}	<190 keV	×	L _μ =1	
$L_{\mu} = 0 \rightarrow -1 1$	ν_{τ}	<18.2 MeV	×	L _t =1	
In the standard model lepton flavor conservation is a consequence of vanishing neutrino masses. Lepton flavor violation also	In the Standard Model neutrinos are assumed to be massless. Recently clear evidence for neutrino oscillations have been observed: explained with non-zero masses. Mass difference are very small: $m_v < 3 \text{ eV}$ for all Neutrinos				
for charged leptons ?					

IA	Mediator boson	strength
Strong	Gluon g	1
Elektro- magnetic	Photon	~10 ⁻²
weak	$W^{\pm} Z^0$	~10 ⁻⁵
Gravitation	Graviton	~10 ⁻³⁹

Momentum at collision Momentum at injection Dipole field at 7 TeV Circumference	7 TeV/c 450 GeV/c 8.33 Tesla 26658 m		High beam energy in LEP tunnel superconducting NbTi magnets at 1.9 K	
Luminosity Number of bunches Particles per bunch DC beam current Stored energy per beam	10³⁴ cm⁻²s⁻¹ 2808 1.1·10 ¹¹ 0.56 A 350 MJ		High luminosity at 7 TeV very high energy stored in the beam	
Normalised emittance Beam size at IP / 7 TeV Beam size in arcs (rms)	<mark>3.75</mark> 15.9 300	<mark>μm</mark> μm μm	beam power concentrated in small area	
Arcs: Counter-rotating proton in-one magnets Magnet coil inner diameter	beams ir 56	i two- mm	Limited investment small aperture for beams	

3	. Natural ι	units	$\hbar = c$	c = 1			
With this choice one has the freedom to choose the unit of one other physical quantity. Typically: [E] = GeV \Rightarrow Units of all other quantities are defined							
	Quantity	HEP unit		SI unit			
	Energy	GeV		$1.6 \cdot 10^{-10} J$			
	Mass	GeV	$\times 1/c^{2}$	$1.78 \cdot 10^{-27} kg$			
	Time	GeV ⁻¹	$\times\hbar$	$6.58 \cdot 10^{-25} s$			
	Length	GeV ⁻¹	$ imes \hbar c$	0.197 fm			
	Area	GeV ⁻²	$\times (\hbar c)^2$	0.389 <i>mb</i>	Heaviside Lorentz Units: $\varepsilon_0 = \mu_0 = 1$		
	Charge e	$\sqrt{4\pi\alpha}$	$ imes \left(\hbar \mathcal{C} \mathcal{E}_{0} \right)^{1/2}$	1.6 · 10 ⁻¹⁹ C	$a = e^2$		
	Temp Tk	GeV	× 1/ <i>k</i>	1.16 ⋅ 10 ¹⁶ <i>K</i>	$\alpha = \frac{1}{4\pi}$		
useful const. : $\hbar c = 197 \text{ MeV} \cdot \text{fm}$ $(\hbar c)^2 = 0.389 \text{ GeV}^2 \text{mb}$							