Experimental tests of the Standard Model

- Discovery of the W and Z bosons
- Precision tests of the Z sector
- Precision tests of the W sector
- Electro-weak unification at HERA
- Radiative corrections and prediction of the top and Higgs mass
- Top discovery at the Tevatron
- Higgs searches at the LHC

The Nobel Prize in Physics 1984

Carlo Rubbia	Simon van der Meer

"for their decisive contributions to the large project, which led to the discovery of the field particles W and Z, communicators of weak interaction"

	S. van der Meer		
(One of the achievements to allow high-intensity $p p$ collisions, is		
S	stochastic cooling of the p beams before inserting them into SPS.		

1.5 Production of Z and W bosons in e^+e^- annihilation

2. Precision tests of the Z sector

(LEP and SLC) ↑

2.1 Cross section for $e^+e^- \rightarrow \gamma/Z \rightarrow f\bar{f}$

for $e^+e^-
ightarrow \mu^+\mu^-$

 $M_{\gamma} = -e^{2}(\overline{\mu}\gamma_{\mu}\mu)\frac{1}{q^{2}}(\overline{e}\gamma^{\mu}e)$ $M_{Z} = -\frac{g^{2}}{\cos^{2}\theta_{W}}\left[\overline{\mu}\gamma^{\nu}\frac{1}{2}(g_{V}^{\mu}-g_{A}^{\mu}\gamma^{5})\mu\right]\frac{g_{\nu\rho}-q_{\nu}q_{\rho}/M_{Z}^{2}}{(q^{2}-M_{Z}^{2})+iM_{Z}\Gamma_{Z}}\left[\overline{e}\gamma^{\rho}\frac{1}{2}(g_{V}^{e}-g_{A}^{e}\gamma^{5})e\right]$

Z propagator considering a finite Z width

Differential cross section for $e^+ e^- \rightarrow \mu^+ \mu^ \frac{d\sigma}{d\cos\theta} = \frac{\pi\alpha^2}{2s} \left[F_{\gamma}(\cos\theta) + F_{\gamma Z}(\cos\theta) \frac{s(s-M_Z^2)}{(s-M_Z^2)^2 + M_Z^2 \Gamma_Z^2} + F_Z(\cos\theta) \frac{s^2}{(s-M_Z^2)^2 + M_Z^2 \Gamma_Z^2} \right]$ $\frac{\gamma}{\sqrt{Z \text{ interference}}} Z$ With $F_{\gamma}(\cos\theta) = Q_e^2 Q_{\mu}^2 (1 + \cos^2\theta) = (1 + \cos^2\theta)$

$$F_{\gamma Z}(\cos \theta) = \frac{Q_e Q_{\mu}}{4 \sin^2 \theta_W \cos^2 \theta_W} \Big[2g_V^e g_V^{\mu} (1 + \cos^2 \theta) + 4g_A^e g_A^{\mu} \cos \theta \Big]$$
$$F_{Z}(\cos \theta) = \frac{1}{16 \sin^4 \theta_W \cos^4 \theta_W} \Big[(g_V^{e^2} + g_A^{e^2}) (g_V^{\mu^2} + g_A^{\mu^2}) (1 + \cos^2 \theta) + 8g_V^e g_A^e g_V^{\mu} g_A^{\mu} \cos \theta \Big]$$

Resonance looks the same, independent of final state: Propagator is the same

 $e^+ e^- \rightarrow e^+ e^-$

t channel contribution \rightarrow forward peak

LEP energy calibration: Hunting for ppm effects

Changes of the circumference of the LEP ring changes the energy of the electrons:

· tide effects Changes of LEP circumference △C=1...2 mm/27km (4...8x10⁻⁸) · water level in lake Geneva Effect of lake 1992 Effect of moon 1993 AC (mm) Beam Energy (MeV) 4647 1999 LEP run . 11th 1992 Correlates with 00ppm 2 lake level .. 4647 1 Tide prediction 46465 0 vy" Rainfall 22:00 2:00 6:00 10:00 14:00 18:00 22:00 2:00 -1 100 250 150 200 300 Daytime The total strain is 4×10^{-8} ($\Delta C = 1 \text{ mm}$)

Day

Effect of the French "Train a Grande Vitesse" (TGV)

2.3 Number of light neutrino generations

In the Standard Model:

$$\Gamma_{Z} = \Gamma_{had} + 3 \cdot \Gamma_{\ell} + N_{v} \cdot \Gamma_{v} \longrightarrow$$
invisible : Γ_{inv}

$$e^{+} e^{-} \rightarrow Z \rightarrow v_{e} \overline{v}_{e}$$

$$e^{+} e^{-} \rightarrow Z \rightarrow v_{\mu} \overline{v}_{\mu}$$

 $\Gamma_{\text{inv}}=0.4990\pm0.0015~\text{GeV}$

To determine the number of light neutrino generations:

=1.991±0.001 (small theo. 5.9431±0.0163 uncertainties from $m_{top} M_{H_1}$

 N_{ν} = 2.9840 ± 0.0082

No room for new physics: $Z \rightarrow$ new

Forward-backward asymmetry

Away from the resonance A_{FB} is large
 → interference term dominates

$$A_{FB} \sim g_A^e g_A^f \cdot \frac{s(s - M_Z^2)}{(s - M_Z^2)^2 + M_Z^2 \Gamma_Z^2}$$

• At the Z pole: Interference = 0

$$A_{\scriptscriptstyle FB} \sim g^e_{\scriptscriptstyle A} g^e_{\scriptscriptstyle V} g^f_{\scriptscriptstyle A} g^f_{\scriptscriptstyle V}$$

 \rightarrow very small because $g_{_V{}^{^{_I}}}$ small in SM

Fermion couplings

Away from the resonance A_{FB} is large
 → interference term dominates

$$A_{FB} \sim g^e_A g^f_A \cdot rac{s(s-M^2_Z)}{(s-M^2_Z)^2 + M^2_Z \Gamma^2_Z}$$

• At the Z pole: Interference = 0

$$A_{FB} \sim g^e_A g^e_V g^f_A g^f_V$$

 \rightarrow very small because $g_{_V{}}{}^{_I}$ small in SM

Asymmetries together with cross sections allow the determination of the fermion couplings g_A and g_V

Invariant W mass recontruction

4. Electro-weak unification, as visible at HERA

5. Higher order corrections and the Higgs mass

Observation of the top quark at TEVATRON (1995)

