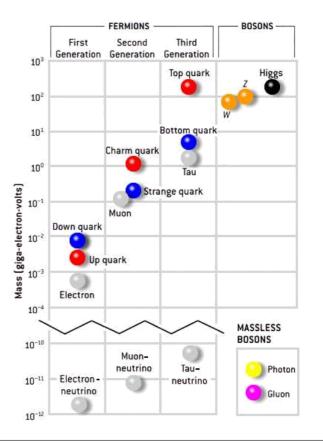
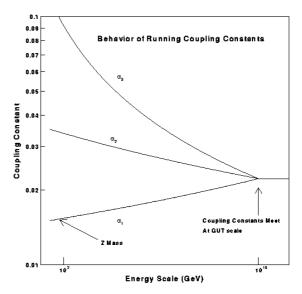
Searches for New Physics Beyond the Standard Model (BSM)

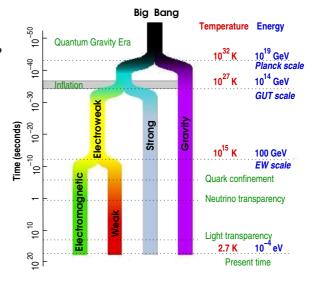

- Problems of the Standard Model
- Supersymmetry (SUSY)
- Extra Dimensions
- Further Alternatives

Standard Model Fermions

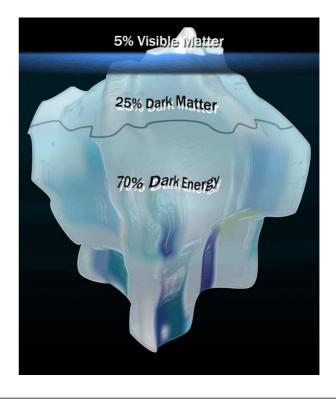
- Why 3 generations of quarks and leptons?
- Why so strange hypercharges? $[Y = 2(Q - T_3)]$
- Why flavour mixing for quarks (CKM) and neutrinos (MNS)?
- What to do with right-handed neutrinos?
- $\begin{pmatrix} v'_{e} \\ e \end{pmatrix}_{L}^{-\frac{1}{2}} & \begin{pmatrix} v'_{\mu} \\ \mu \end{pmatrix}_{L}^{-\frac{1}{2}} & \begin{pmatrix} v'_{\tau} \\ \tau \end{pmatrix}_{L}^{-\frac{1}{2}} & e_{\mathrm{R}}^{-1} & \mu_{\mathrm{R}}^{-1} & \tau_{\mathrm{R}}^{-1} \\ \begin{pmatrix} u \\ d' \end{pmatrix}_{\mathrm{L,r}}^{\frac{1}{6}} & \begin{pmatrix} c \\ s' \end{pmatrix}_{\mathrm{L,r}}^{\frac{1}{6}} & \begin{pmatrix} t \\ b' \end{pmatrix}_{\mathrm{L,r}}^{\frac{1}{6}} & u_{\mathrm{R,r}}^{-\frac{1}{3}} & s_{\mathrm{R,r}}^{-\frac{1}{3}} & b_{\mathrm{R,r}}^{-\frac{1}{3}} \\ \begin{pmatrix} u \\ d' \end{pmatrix}_{\mathrm{L,g}}^{\frac{1}{6}} & \begin{pmatrix} c \\ s' \end{pmatrix}_{\mathrm{L,g}}^{\frac{1}{6}} & \begin{pmatrix} t \\ b' \end{pmatrix}_{\mathrm{L,g}}^{\frac{1}{6}} & u_{\mathrm{R,g}}^{\frac{1}{3}} & c_{\mathrm{R,g}}^{\frac{1}{3}} & b_{\mathrm{R,g}}^{-\frac{1}{3}} \\ \begin{pmatrix} u \\ d' \end{pmatrix}_{\mathrm{L,g}}^{\frac{1}{6}} & \begin{pmatrix} c \\ s' \end{pmatrix}_{\mathrm{L,g}}^{\frac{1}{6}} & \begin{pmatrix} t \\ b' \end{pmatrix}_{\mathrm{L,g}}^{\frac{1}{6}} & u_{\mathrm{R,g}}^{-\frac{1}{3}} & d_{\mathrm{R,g}}^{-\frac{1}{3}} & d_{\mathrm{R,g}}^{-\frac{1}{3}} \\ \begin{pmatrix} u \\ d' \end{pmatrix}_{\mathrm{L,b}}^{\frac{1}{6}} & \begin{pmatrix} c \\ s' \end{pmatrix}_{\mathrm{L,b}}^{\frac{1}{6}} & \begin{pmatrix} t \\ b' \end{pmatrix}_{\mathrm{L,b}}^{\frac{1}{6}} & u_{\mathrm{R,b}}^{-\frac{1}{3}} & d_{\mathrm{R,b}}^{-\frac{1}{3}} & d_{\mathrm{R,b}}^{-\frac{1}{3}} \\ \end{pmatrix}$


Standard Model Fermions

- Why 3 generations of quarks and leptons?
- Why so strange hypercharges? $[Y = 2(Q - T_3)]$
- Why flavour mixing for quarks (CKM) and neutrinos (MNS)?
- What to do with right-handed neutrinos?
- What is the origin of fermion masses? Why so huge fermion mass range?


Standard Model Bosons

- Does SM Higgs exist?
- How can all gauge interactions be unified?


Standard Model Bosons

- Does SM Higgs exist?
- How can all gauge interactions be unified?
- Why such an hierarchy of gauge fields?

Cosmological Problems

- What is dark matter?
- What is dark energy?

Attempts to Solve the Problems of the Standard Model

Many attemps going in different directions

- Extended gauge symmetries
- New mechanisms of symmetry breaking
- More fundamental fields
- Extra dimensions
- ...

Radiative Corrections to Higgs Mass

 Higgs Self-energy corrections in perturbation theory: M²_H = M²_{H,bare} + ΔM²_H Have to integrate over all particle momenta in loops
⇒ Loop corrections to Higgs mass rise with UV cut-off Λ²

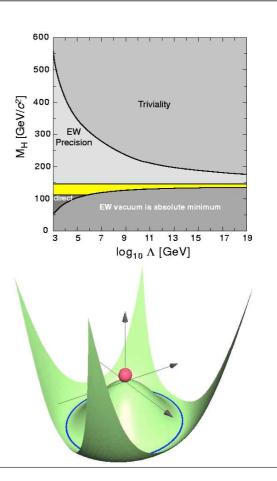
• Fine tuning to precision ~ M_H^2/Λ^2 is needed For $\Lambda = M_{\text{Planck}}$, $M_H \sim 100 \text{ GeV}$: $(\Lambda/M_H)^2 \sim 10^{34}$ – gauge field scale hierarchy

$$M_{H}^{2} = M_{H,\text{bare}}^{2} + \underbrace{\frac{1}{16\pi^{2}}(-6g_{t}^{2} + g^{2} + \lambda^{2}) \cdot 10^{34}M_{H}^{2}}_{\text{SM}} - \underbrace{\dots}_{\text{New Physics}} \simeq (130 \,\text{GeV})^{2}$$

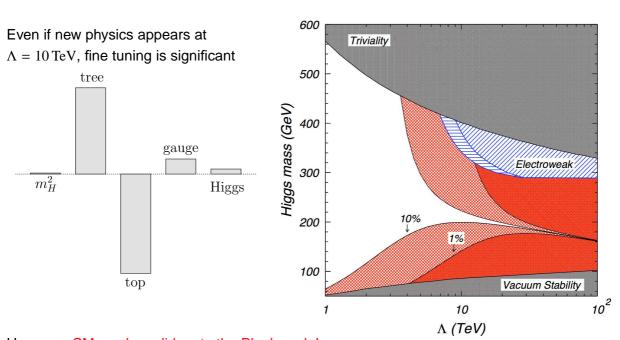
"Fine Tuning" Argument

Current exp. limits on Higgs mass:

 $114.4 < M_H < 144 \, {\rm GeV}$ direct searches EW fits


• If SM is valid up to M_{Planck} , theor. limits: $135 < M_H < 175 \text{ GeV}$

EW vacuum Triviality


EW vacuum stability: Higgs mass cannot be too light or the potential will not have a Mexican hat shape and will turn negative at large values

$$V(\phi) = -\mu^2 |\phi^{\dagger}\phi| + \lambda |\phi^{\dagger}\phi|^2$$

Triviality: if the Higgs mass is too large, the Higgs self-coupling drives the mass to infinity above certain scale

Triviality and Vacuum Instability $\lambda(q)$ Upper bound: $q_{\infty} < \Lambda$ [Triviality, Landau Pole] Higgs / self coupling Lower bound: $q_0 < \Lambda$ From RGE depends on MH [Vacuum Instability] and $M_H \propto \lambda(v^2)$ [Running self coupling] ¶∞ Must be larger than scale Λ at which SM breaks down \mathbf{Q}_0 C Mн with $M_H \propto \lambda(\nu^2) \cdot \nu^2$ scale [v: vacuum expectation value]

However: SM can be valid up to the Plank scale! Fine tuning is just a "stomach problem".

Anthropic principle: properties of the universe are so special because we happen to exist and be able to ask these very questions

Electron in Classical Electrodynamics

• E.m. self-energy

$$\Delta E_{\text{Coulomb}} = \frac{1}{4\pi\epsilon_0} \frac{e^2}{r_e} \qquad r_e - \text{"size"}$$

must be a part of the electron mass:

$$(m_e c^2)_{\text{observed}} = (m_e c^2)_{\text{bare}} + \Delta E_{\text{Coulomb}}$$

• From experiments: $r_e < 10^{-17} \,\mathrm{cm} \implies \Delta E_{\mathrm{Coulomb}} \gtrsim 10 \,\mathrm{GeV}$

 $0.511 = -9999.489 + 10000.000 \,\mathrm{MeV}$

▶ Classical e.m. is not valid for scales where $\Delta E_{\text{Coulomb}} \gtrsim m_e c^2$:

$$d < \frac{e^2}{4\pi\epsilon_0 m_e c^2} = 2.8 \cdot 10^{-13} \,\mathrm{cm}$$

Quantum Effect – e^+e^- Pair Production

 $\gamma e^{-\gamma}$ • Self-energy

the same diagram in QED

 e^{-}

 \int_{V} • Positron exists. e^+e^- pair production $\frac{e^-}{e^-}$ Vacuum fluctuations at $\Delta t \sim \frac{\hbar}{\Delta E} \sim \frac{\hbar}{2m_ec^2}$ (Heisenberg's uncertainty)

modify physics at $d \sim c\Delta t \sim 200 \cdot 10^{-13}$ cm

$$\Delta E_{\text{pair}} = -\frac{1}{4\pi\epsilon_0} \frac{e^2}{r_e} + \dots \qquad \Longrightarrow \qquad \Delta E = \Delta E_{\text{Coulomb}} + \Delta E_{\text{pair}} = \frac{3\alpha}{4\pi} m_e c^2 \log \frac{\hbar}{m_e c r_e}$$

Mass correction

$$(m_e c^2)_{\text{observed}} = (m_e c^2)_{\text{bare}} \left[1 + \frac{3\alpha}{4\pi} \log \frac{\hbar}{m_e c r_e} \right]$$

Even for $r_e \sim 1/M_{\rm Plank} \sim 10^{-33} \, {\rm cm}$ mass increases by 9%

 \blacktriangleright Doubling d.o.f. + symmetry \Longrightarrow divergency cancellation

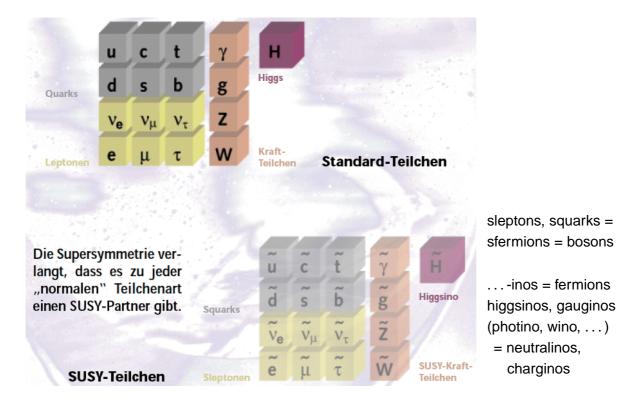
Higgs Self-Energy

 $\Delta M_{H,\text{top}}^2 = -\frac{3}{8\pi^2}g_t^2\Lambda^2 + \dots$ <u>H</u>

Bosons and fermions produce different signs in loops \implies Introduce "superpartner" for top = scalar top = "stop" = \tilde{t}

$$H \qquad \qquad \Delta M_{H,\text{stop}}^2 = +\frac{3}{8\pi^2}g_t^2\Lambda^2 + \dots$$

Total correction


$$\Delta M_{H,\text{top}}^{2} + \Delta M_{H,\text{stop}}^{2} = -\frac{3}{8\pi^{2}}g_{t}^{2}(m_{\tilde{t}}^{2} - m_{t}^{2})\log\frac{\Lambda^{2}}{m_{\tilde{t}}^{2}}$$

• "Naturalness" argument: $m_{\tilde{t}}$ should be not much larger than m_t $m_{\tilde{t}} \sim \text{TeV}???$

Supersymmetry (SUSY)

SUSY Particles

