Flavor Physics – Exercise Sheet 6 – SomSem 2014

Discussion: 06/06 during the tutorial

Exercise 1: $K^0 - \overline{K^0}$ oscillation probability

Assuming CP invariance the observed K_S and K_L states are given by the following linear combinations of the flavor states,

$$\begin{split} |K_S\rangle &= \frac{1}{2} \left(\left| K^0 \right\rangle + \left| \bar{K^0} \right\rangle \right), \\ |K_L\rangle &= \frac{1}{2} \left(\left| K^0 \right\rangle - \left| \bar{K^0} \right\rangle \right). \end{split}$$

The physical states exhibit the time-dependence $|K_{S,L}(t)\rangle = e^{-im_{S,L}t}e^{-i\Gamma_{S,L}t/2}|K_{S,L}\rangle$, where $m_{S,L}$ and $\Gamma_{S,L}$ are the mass and the total decay width of the state.

Derive the time dependent probability $P(K^0(t=0) \to K^0)(t)$ to observe an initial K^0 after time t as K^0 and the probability $P(K^0(t=0) \to \bar{K}^0)(t)$ to observe it in the flavor-mixed \bar{K}^0 state. The formulae were given in the lecture.

Exercise 2: $K_S - K_L$ interference as confirmation for CP violation

In presence of CP violation the physical states K_S and K_L decaying to CP eigenstates can interfere. For a neutral kaon which is produced at t = 0 as a $K^0(\bar{K}^0)$ and propagates freely in vacuum, the time-dependent decay rate to $\pi^+\pi^-$ is given by

$$\Gamma \left[K^0 \left(\bar{K^0} \right) (t=0) \right] (t) \propto e^{-\Gamma_S t} + |\eta_{\pi\pi}|^2 e^{-\Gamma_L t} \pm 2 |\eta_{\pi\pi}| e^{-(\Gamma_S + \Gamma_L)t/2} \cos \left(\Delta m t - \phi_{\pi\pi} \right),$$

where the + (-) sign applies for the $K^0(\bar{K}^0)$. The complex number $\eta_{\pi\pi} = |\eta_{\pi\pi}| e^{i\phi_{\pi\pi}}$ describes the CP violating amplitude ratio

$$\eta_{\pi\pi} = \frac{\mathcal{A}(K_L \to \pi\pi)}{\mathcal{A}(K_S \to \pi\pi)}.$$

- a) Motivate the above formula for the time dependent decay-rate.
- b) Read the attached paper: C. Geweniger et al., Phys. Lett. 48B (1974) 487.
 - Explain the selection of the $K^0 \to \pi\pi$ events.
 - How is the proper-time distribution in Figure 4 obtained.
 - How do the authors finally obtain $|\eta_{\pi\pi}|$ and the phase $\phi_{\pi\pi}$.

To better understand the detector layout, a second paper describing the apparatus is also added C. Geweniger et al., Phys. Lett. 48B (1974) 483.