Flavor Physics - Exercise Sheet 4 - SomSem 2014

Discussion: 23/05 during the tutorial

Exercise 1: The Unitarity Triangle

The Unitarity Triangle (UT) is defined as the following triangular relation:

$$
V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0
$$

a) Show that the tip of the resized (i.e. length of basis $=1$) unitarity triangle is at $\bar{\rho}+i \bar{\eta}$ with $\bar{\rho}=\rho\left(1-\frac{\lambda^{2}}{2}\right)$ and $\bar{\eta}=\eta\left(1-\frac{\lambda^{2}}{2}\right)$.
b) Calculate the area of the original (not resized) triangle in terms of the Wolfenstein parameters.

Exercise 2: GIM cancellation in loops

The figure shows the Feyman diagram of the loop-suppressed decay $b \rightarrow s \gamma$. This diagram contributes for example to the decay $B^{0} \rightarrow K^{*} \mu^{+} \mu^{-}$. Show that for massless quarks the sum of the amplitudes with internal u, c and t-quark is exactly zero. Hint: Exploit the unitarity of the CMK matrix.

