Flavor Physics - Exercise Sheet 3 - SomSem 2014

Discussion: $16 / 05$ during the tutorial

Exercise 1: Vector meson mixing angle

The physically observed vector mesons ω and ϕ are mixtures of the octet and singlet states ϕ_{8} and ϕ_{1} :

$$
\begin{aligned}
& \phi=\phi_{1} \sin \theta-\phi_{8} \cos \theta \\
& \omega=\phi_{8} \sin \theta+\phi_{1} \cos \theta
\end{aligned}
$$

Mass terms for a meson ψ in the Hamiltonian appear typically as $M_{\psi}^{2}=\langle\psi| H|\psi\rangle$. Calculate the masses $M_{\phi}^{2}, M_{\omega}^{2}$ as functions of $M_{1}^{2}=\left\langle\phi_{1}\right| H\left|\phi_{1}\right\rangle, M_{8}^{2}=\left\langle\phi_{8}\right| H\left|\phi_{8}\right\rangle$ and $M_{18}^{2}=\left\langle\phi_{1}\right| H\left|\phi_{8}\right\rangle=M_{81}^{2}=\left\langle\phi_{8}\right| H\left|\phi_{1}\right\rangle$ from the above mixing. Since ω and ϕ are orthogonal the off-diagonal term $M_{\phi \omega}^{2}$ is zero but can also be expressed by M_{1}^{2}, M_{8}^{2} and M_{18}^{2} and leads to a third equation. By eliminating M_{1}^{2} and M_{18}^{2} one obtains an equation for $\tan \theta$. Calculate $\tan \theta$.

Using the linear octet mass formula one finds an expression for M_{8}^{2},

$$
M_{8}^{2}=\frac{1}{3}\left(4 M_{K^{*}}^{2}-M_{\rho}^{2}\right)
$$

Replace M_{8}^{2} in the expression for $\tan \theta$ by the masses of the observed vector mesons and estimate the mixing angle θ from the measured masses.

Hint: For help, look at D.Perkins: Introduction to High Energy Physics.

Exercise 2: Ideal vector meson mixing

Show that if one uses the ideal mixing angle $\cos \theta=1 / \sqrt{3}$ in the above meson mixing one obtains pure flavor states:

$$
\begin{gathered}
\phi=s \bar{s} \\
\omega=(u \bar{u}+d \bar{d}) / \sqrt{2}
\end{gathered}
$$

Exercise 3: Extending SU(3) to include Charm

How are the possible meson states grouped if in addition to iso-spin and strangeness also charm is considered as quantum number. How man states exist? For more information, look at the Particle Data Book (Chapter 14: Quark model).

