Neutrino Discovery

Cowan \& Reines, 1956 (Nobel prize 1995)

Project Poltergeist \& Herr Auge

Electron and Muon Neutrino

1.

Sm undergoes is small recoil ($p_{\text {recoil }}=950 \mathrm{KeV}$). Because of angular momentum conservation Spin $\mathrm{J}=1$ of Sm^{*} is opposite to neutrino spin. Important: neutrino helicity is transferred to the Sm nucleous.

Neutrino Helicity

2. $\quad \gamma$ emission: ${ }^{152} \operatorname{Sm}^{*}\left(J^{P}=1^{-}\right) \rightarrow{ }^{152} \operatorname{Sm}\left(J^{P}=0^{+}\right)+\gamma$

Configuration

Photons along the Sm recoil direction carry the polarization of the Sm^{*} nucleus

- How to select photons along the recoil direction ? $\Rightarrow 3$
- How to determine the polarization of these photons $? \Rightarrow 4$

Neutrino Helicity

3. Resonant photon scattering: $\gamma+{ }^{152} \mathrm{Sm} \rightarrow{ }^{152} \mathrm{Sm}^{*} \rightarrow{ }^{152} \mathrm{Sm}+\gamma$
4.

Determination of the photon polarization

Exploit that the transmission index through magnetized iron is polarization dependent: Compton scattering in magnetized iron
$P_{\gamma}=-0.66 \pm 0.14 \quad$ (expect. 0.75)
${ }^{152} \mathrm{Sm}^{*} \rightarrow{ }^{152} \mathrm{Sm}+\gamma$

Electromagnet

