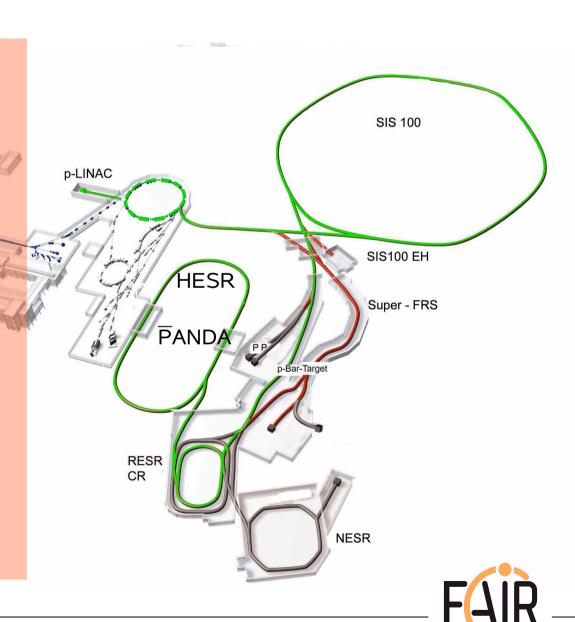
Overview of

Lars Schmitt, FAIR/GSI Darmstadt

- Antiprotons at FAIR
- PANDA Overview
- Selected PANDA Systems
- Schedule and Conclusions

Antiprotons at FAIR



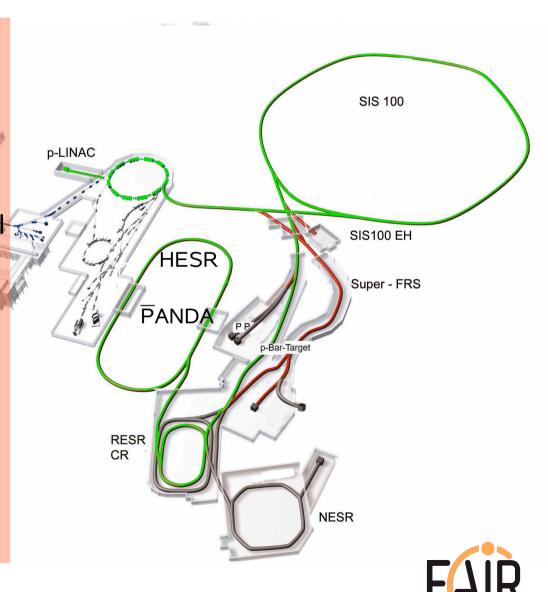
Antiproton production

- Proton Linac 70 MeV
- Accelerate p in SIS18 / 100
- Produce p on Ni/Cu target
- Collection in CR, fast cooling
- Full FAIR: Accumulation in RESR, slow cooling
- Storage in HESR and usage in PANDA at < 2x10³² cm⁻²s⁻¹

Modularised Start Version

- RESR is postponed (Mod. 4)
- Accumulation in HESR
- 10x lower luminosity: 10³¹ cm⁻²s⁻¹

Antiprotons at FAIR

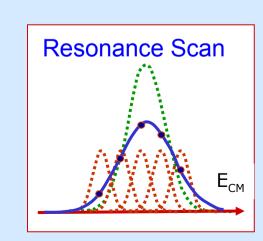


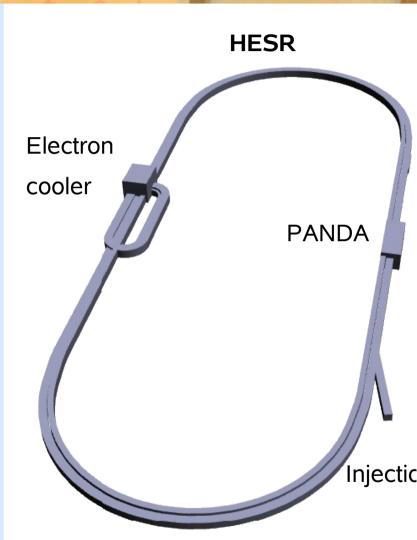
Antiprotons are unique:

- New dimension at FAIR wrt GSI
- Hadron physics bridges nuclear and HI physics to basic QCD
- No other p facility worldwide
- Successful predecessors have demonstrated the large potential

Unique precision at HESR:

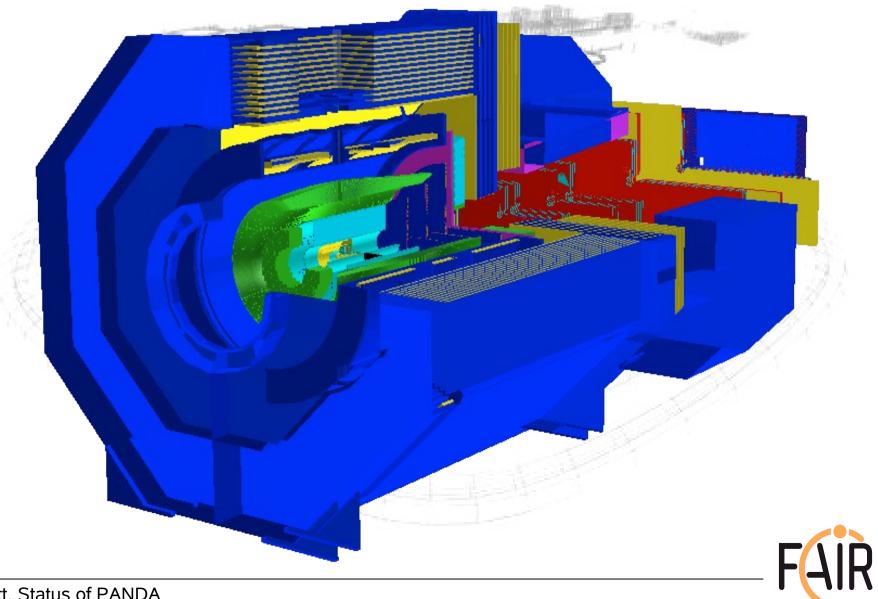
- Stochastic beam cooling
 - → ΔE ~ 50 keV
 - → Tune E_{CM} to scan resonances
- Annihilation at threshold


High Energy Storage Ring


HESR Parameters

- Storage ring for internal target
- Initially also used for accumulation
- Injection of p at 3.7 GeV/c
- Slow synchrotron (1.5-15 GeV/c)
- Luminosity up to L~ 2x10³² cm⁻²s⁻¹

Mode	High luminosity (HL)	High resolution (HR)
Δp/p	~10-4	~4x10 ⁻⁵
L (cm ⁻² s ⁻¹)	2x10 ³²	2x10 ³¹
Stored p	10 ¹¹	10 ¹⁰


- Stochastic & electron cooling
- Resolution ~50 keV
- Tune E_{CM} to probe resonance
- Get precise m and Γ

PANDA Physics Objectives

HEP: interference of coupled channels

Spectroscopy

New narrow XYZ:

Search for partner states

Production of exotic QCD states: Glueballs & hybrids

Astro physics: Strange n-stars

Strangeness
Strange baryons:
Spectroscopy
Polarisation

Nuclear physics:

Hypernuclear spectroscopy

Bound

States of

Strong

Interaction

Nuclear Physics

Hypernuclear physics:

Double A hypernuclei Hyperon interaction

HEP: underlying elementary processes

Nucleon Structure

Generalized parton distributions:

Orbital angular momentum

Drell Yan process:

Transverse structure, valence anti-quarks

Timelike formfactors:

Low and high E, e and μ pairs

HI collisions:

comparing QGP to elementary

Hadrons in nuclei: reactions

Charm and strangeness

in the medium

Physics Goals of PANDA

Hadron Spectroscopy

Experimental Goals: mass, width & quantum numbers J^{PC} of resonances

Charm Hadrons: charmonia, D-mesons, charm baryons

→ Understand new XYZ states, D_s(2317) and others

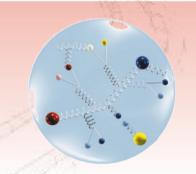
Exotic QCD States: glueballs, hybrids, multi-quarks

Spectroscopy with Antiprotons:

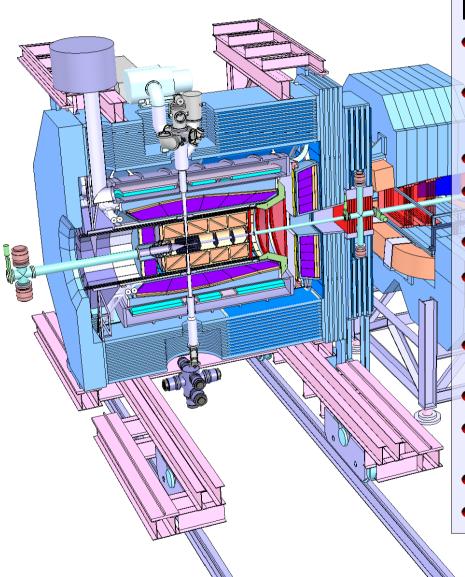
Production of states of all quantum numbers Resonance scanning with high resolution

Generalized Parton Distributions

→ Formfactors and structure functions, L_a


Timelike Nucleon Formfactors
Drell-Yan Process

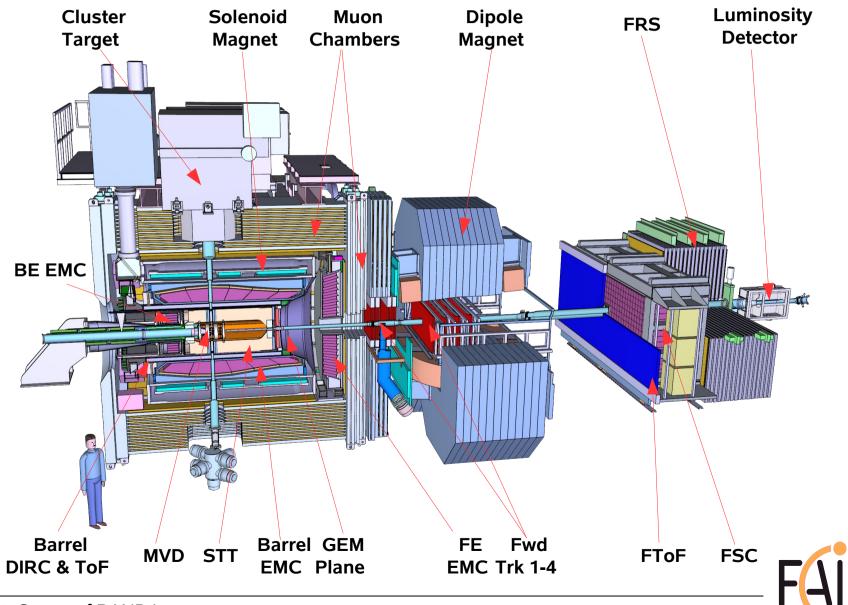
Hypernuclei: Production of double Λ-hypernuclei


γ-spectroscopy of hypernuclei, YY interaction

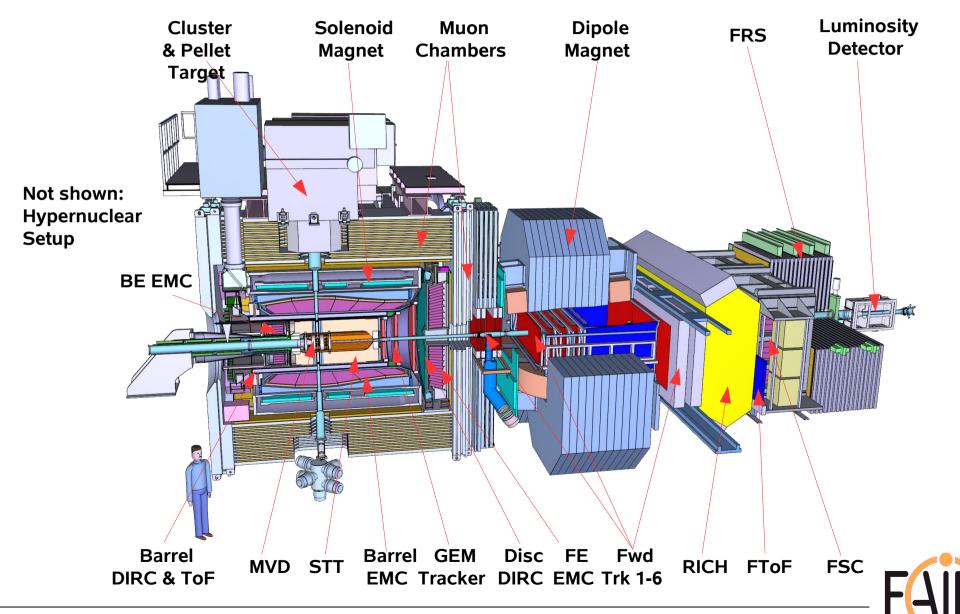
Hadrons in Nuclear Medium

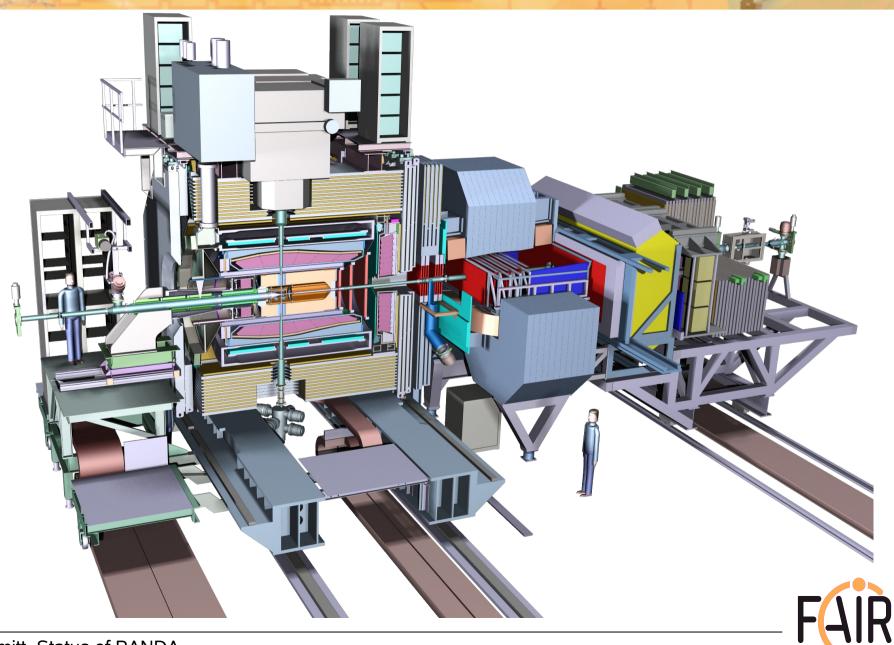
PANDA Spectrometer

Detector requirements:


- 4π acceptance
- High rate capability:
 2x10⁷ s⁻¹ interactions
- Efficient event selection
- Continuous acquisition
- Momentum resolution ~1%
- Vertex info for D, K⁰_S, Y
 (cτ = 317 μm for D[±])
- Good tracking
- Good PID (γ, e, μ, π, K, p)
- Cherenkov, ToF, dE/dx
- γ-detection 1 MeV 10 GeV
- Crystal Calorimeter

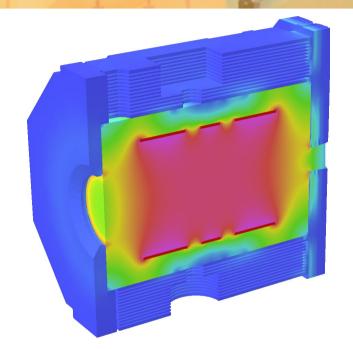
April 29th, 2014

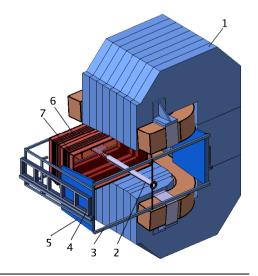

PANDA Start Setup



PANDA Full Setup

Selected PANDA Systems


Magnets


Solenoid Magnet

- Super conducting coil
- 2 T central field
- Segmented coil for target
- Instrumented iron yoke
- Doors for installation and maintenance
- Status of design:
 - Cooperation with CERN for cold mass
 - Conductor optimized, close to tender
 - Yoke design complete
- Contract with BINP started

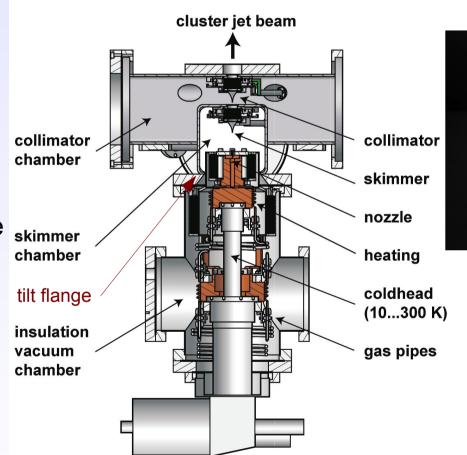
Dipole Magnet

- Normal conducting racetrack design
- Dipole also bends the beam
- HESR component

PANDA Targets

Luminosity Considerations

- Goal: 2x10³² cm⁻²s⁻¹ (HL mode)
- With 10¹¹ stored p and 50 mb: 4x10¹⁵ cm⁻² target density

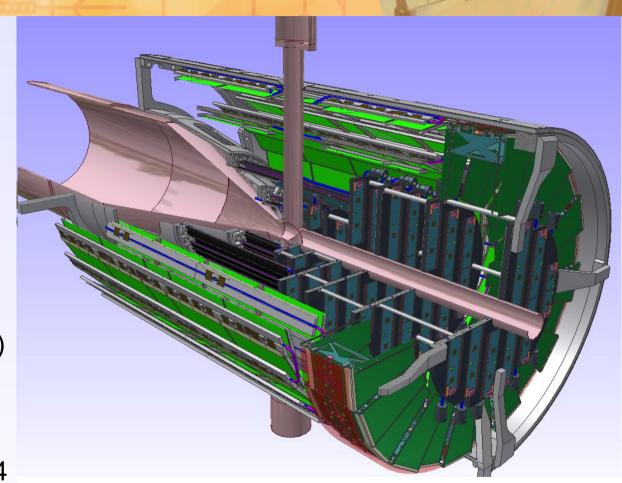

Cluster Jet Target

- Continuous development
 - Nozzle improvement
 - Better alignment by tilt device
 - Record 2x10¹⁵ cm⁻² reached
- TDR approved

Pellet Target

- >4x10¹⁵ cm⁻² feasible
- Prototype under way
- Pellet tracking prototype
- Second TDR part 2017

Latest version of the cluster jet target

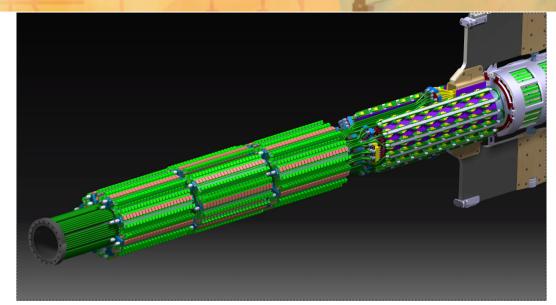

Micro Vertex Detector

Design of the MVD

- 4 barrels and 6 disks
- Continuous readout
- Hybrid pixels (100x100 µm²)
 - ToPiX chip, 0.13µm CMOS
 - Thinned sensor wafers
- Double sided strips
 - Rectangles & trapezoids
 - 64 ch ASIC PASTA
- Mixed forward disks (pixel/strips)

Status:

- PASTA 1st version ready
- ToPix full functional prototype V4
- Detailed service planning


Micro Vertex Detector

Design of the MVD

- 4 barrels and 6 disks
- Continuous readout
- Hybrid pixels (100x100 µm²)
 - ToPiX chip, 0.13µm CMOS
 - Thinned sensor wafers
- Double sided strips
 - Rectangles & trapezoids
 - 64 ch ASIC PASTA
- Mixed forward disks (pixel/strips)

Status:

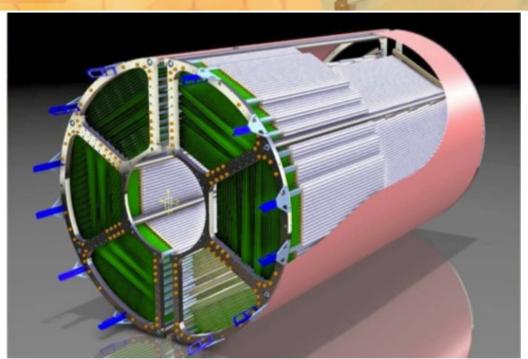
- PASTA 1st version ready
- ToPix full functional prototype V4
- Detailed service planning

DC-DC converters and GBTx boards without cables

DC-DC converters: 24 pieces a 88 converters,

Each piece 1.3 kg, 455 x 85 x 63 mm³

Straw Tube Tracker


- 4600 straws in 21-27 layers, of which 8 layers skewed at ~3°
- Tube made of 27 μm thin Al-mylar,
 Ø=1cm
- R_{in}= 150 mm, R_{out}= 420 mm, I=1500 mm
- Self-supporting straw double layers at γ 1 bar overpressure (Ar/CO₂)
- Readout with ASIC+TDC or FADC

Material Budget

- Max. 26 layers,
- 0.05 % X/X₀ per layer
- Total 1.3% X/X₀

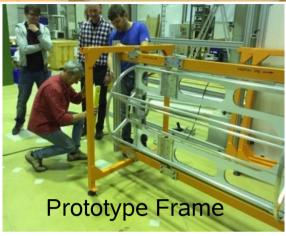
Project Status

- Readout prototypes & beam tests
- Ageing tests: up to 1.2 C/cm²
- Straw series production ongoing:3000 straws produced till end 2015

Straw Tube Tracker Developments

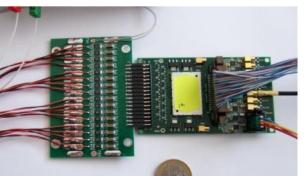
Mechanics status

- Prototype frame installed
- Assembly scheme
- Frontend layout CAD

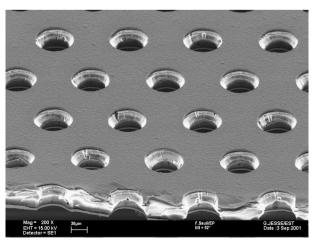

Electronics Status

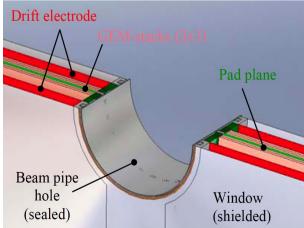

- New PASSTREC ASIC
- New 125 MSPS FADC, no FEE at detector side

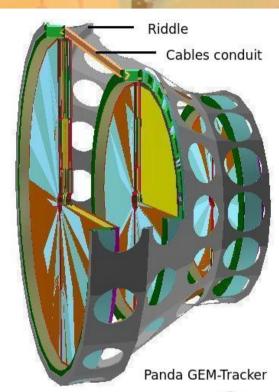
Testbeam campaign


- 5 energies between 0.6 and 3.0 GeV
- Both types of electronics:
 - PASTTREC ASIC + TRB3 TDC
 - FADC (240 MHz & 125 MHz)
- Goal to fully characterise readout
- Final selection: cost/performance in 2018

ADC card

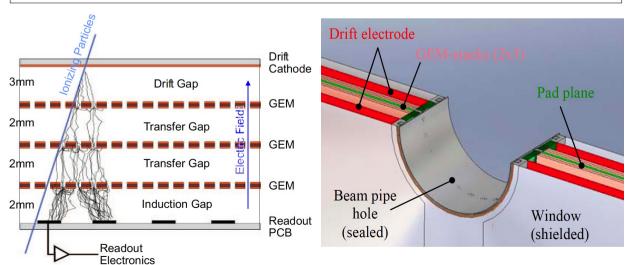

PASTTRFC card

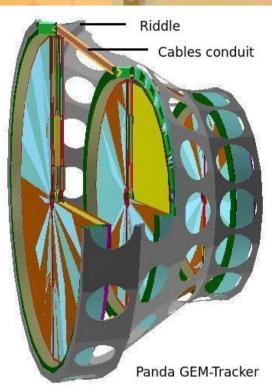


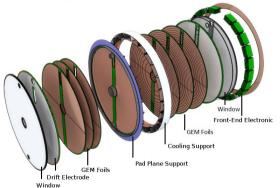

Forward GEM Tracker

Forward Tracking inside Solenoid

- 3 stations with 4 projections each
 - → Radial, concentric, x, y
- Central readout plane for 2 GEM stacks
- Large area GEM foils developed at CERN (50µm Kapton, 2-5µm copper coating)
- ADC readout for cluster centroids
- → Approx. 35000 channels total
- Challenge to minimize material

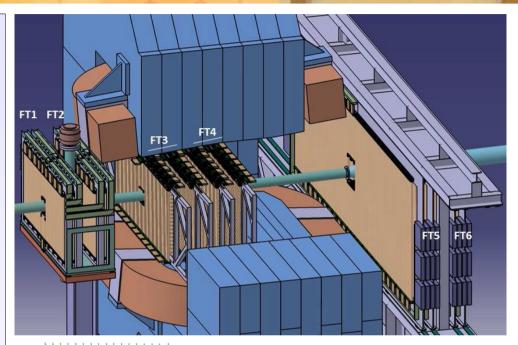


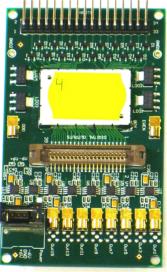


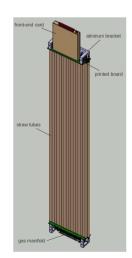

Forward GEM Tracker

Forward Tracking inside Solenoid

- 3 stations with 4 projections each
 - → Radial, concentric, x, y
- Central readout plane for 2 GEM stacks
- Large area GEM foils developed at CERN (50µm Kapton, 2-5µm copper coating)
- ADC readout for cluster centroids
- → Approx. 35000 channels total
- Challenge to minimize material


Forward Tracking


Tracking in Forward Spectrometer


- 3 stations with 2 chambers each
 - FT1&2 : between solenoid and dipole
 - FT3&4 : in the dipole gap
 - FT5&6 : large chambers behind dipole
- Straw tubes arranged in double layers
 - 27 μm thin mylar tubes, 1 cm Ø
 - Stability by 1 bar overpressure
- 4 projections 0°/±5°/0° per chamber

Present status

- Optimisation of setup: FT6 before RICH
- Final simulation ongoing
- Preparation of half plane of FT5
- Preparations for PANDA Phase 0
 @HADES based on FT3 & FT5 modules

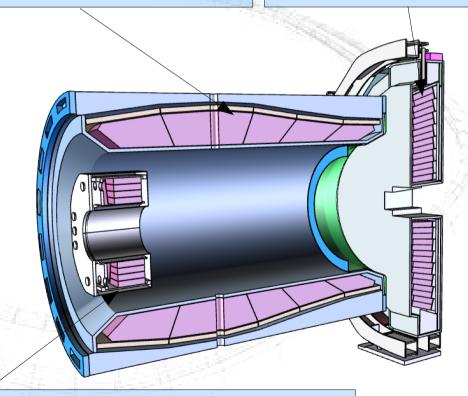
Modular layout

Target Spectrometer EMC

PANDA PWO Crystals

- PWO is dense and fast
- Low γ threshold is a challenge
- Increase light yield:
 - improved PWO II (2xCMS)
 - operation at -25°C (4xCMS)
- Challenges:
 - temperature stable to 0.1°C
 - control radiation damage
 - low noise electronics
- New producer CRYTUR

Large Area APDs


10x10 mm² and 7x14 mm²

Barrel Calorimeter

- 11000 PWO Crystals
- LAAPD readout, 2x1cm²
- $\sigma(E)/E \sim 1.5\%/\sqrt{E} + const.$

Forward Endcap

- 4000 PWO crystals
- High occupancy in center
- LA APD and VPTT

Backward Endcap for hermeticity, 530 PWO crystals

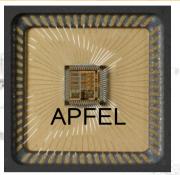
5x5 mm²

EMC Status (1)

PWO Crystal Production

- New producer Crytur
- Test production in 2016 (~100 pc)
- Eol to fund remaining crystals

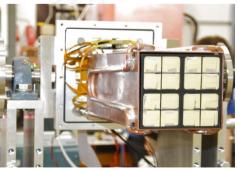
APD Screening

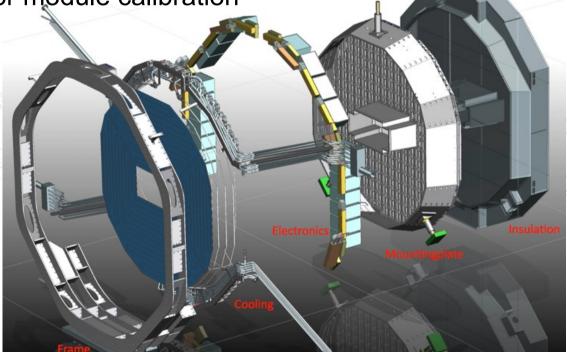

- Screening of 30000 APDs at GSI
- Facility in full shift operation

Barrel progress

- All alveoles produced
- APD readout ASIC produced
- Tests with depolished crystals
- First slice in construction

Backward Endcap


- Prototype tests successful
- Layout of alveoles
- Service planning ongoing


EMC Status (2)

Forward Endcap

- Assembly of full sub-system till 2018
- VPTT all characterised
- APDs in preparation
- Module assembly ongoing

Cooling system available, work on controls

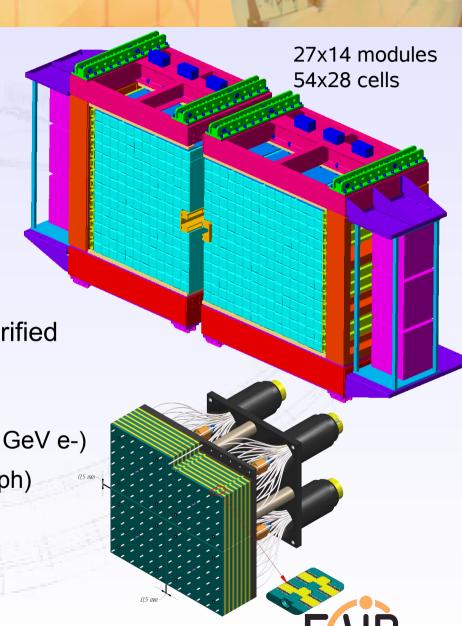
Test stand for module calibration

Forward Spectrometer Calorimeter

Forward electromagnetic calorimeter:

- Interleaved scintillator and absorber
- WLS fibres for light collection
- PMTs for photon readout
- FADCs for digitization
- Active area size 297x154 cm²

System status:

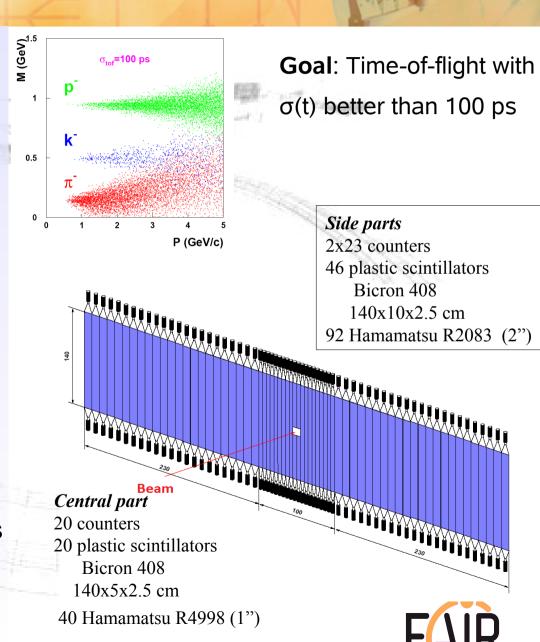

Module design 2x2 cells of 5.5x5.5 cm² verified

Tests with electrons and tagged photons:

→ Energy resolution:

 $\sigma_{\rm E}$ /E = 5.6/E \oplus 2.4/ $\sqrt{\rm E}$ [GeV] \oplus 1.3 [%] (1-19 GeV e-) $\sigma_{\rm E}$ /E = 3.7/ $\sqrt{\rm E}$ [GeV] \oplus 4.3 [%] (50-400 MeV ph)

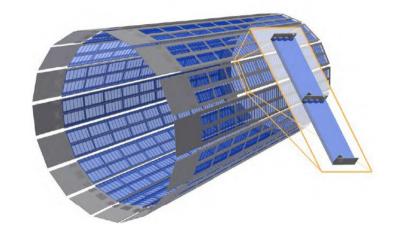
- Time resolution: 100 ps/√E [GeV]
- TDR approved in Mar 2016

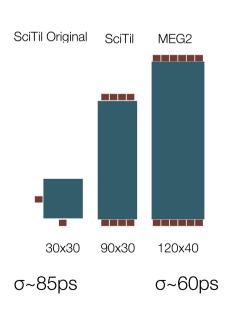

Forward Time of Flight

Forward Spectrometer PID

- Time-of-Flight essential
- No start detector
- Relative timing to Barrel

Detector layout:


- Scintillator wall at z=7.5m made of 140 cm long slabs
- Bicron 408 scintillator
- PMT readout on both ends
- 10 cm slabs on the sides,
 5 cm slabs in the center
- TRB TDC readout
- Later addition: Side panels in dipole for low momentum tracks (not part of initial TDR)
- TDR close to submission



Scintillator Tile Hodoscope

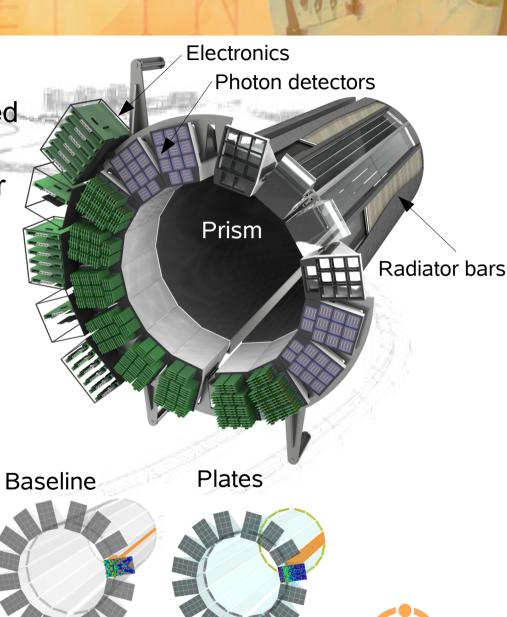
Detector for ToF and event timing

- Scintillator tiles 5 mm thick
 - → BC404, BC408 or BC420
 - → Space points with precision timing
 - → Lowest possible material budget
- Photon readout with SiPMs (3x3 mm²)
 - High PDE, time resolution, rate capability
 - Work in B-fields, small, robust, low bias
 - High intrinsic noise
 - Temperature dependence
 - Evaluation of rad. hardness
- System time resolution: <100 ps</p>
- ToFPET ASIC for SiPM readout
- Layout optimsation:
 - Serial readout, more SiPM
 - Multilayer PCB for transmission
- TDR submitted to FAIR

very first result σ<75ps

PANDA Barrel DIRC

Baseline design


- DIRC: Detection of Internally Reflected Cherenkov light pioneered by BaBar
- Cherenkov detector with SiO₂ radiator
- Detected patterns give β of particles

Optimization and challenges

- Focusing by lenses/mirrors
- More compact design
- Magnetic field → MCP PMT
- Fast readout to suppress BG
- Plates as more economic radiator

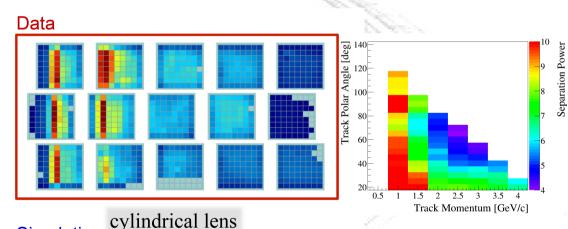
Project status

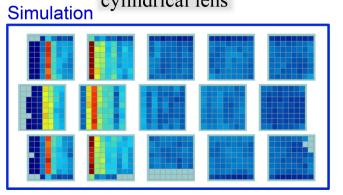
- Baseline design verified
- TDR submitted to FAIR

PANDA Barrel DIRC: Recent Results

Testbeam campaign at CERN T9

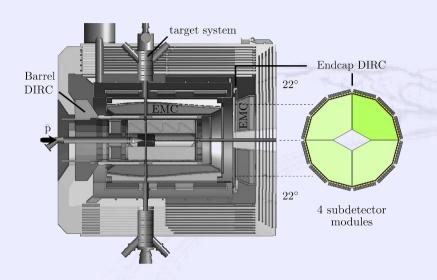
- 2 periods: 3+2 weeks May-July
- ToF ref. at multi-hadron beam
- Readout with TRB3/PADIWA


Measurement program


- Focusing by various lenses
- Prism as expansion volume
- Bars as baseline radiator
- Plate radiator as alternative

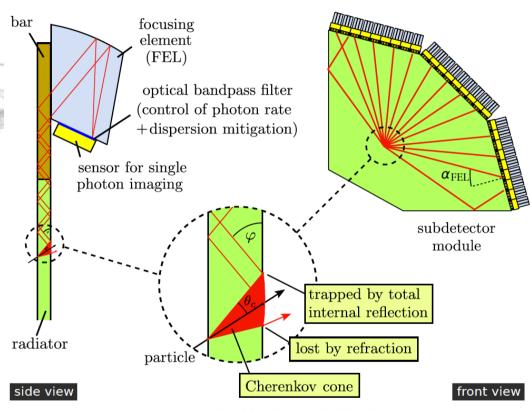
Outlook

- Data analysis ongoing:Expect results for design choice
- TDR submitted to FAIR



Simulated separation of π/p at testbeam

PANDA Disc DIRC



Novel concept for forward PID

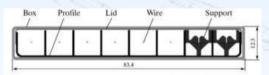
- Based on DIRC principle
- Disc shaped radiator
- Readout at the disc rim

Project status:

- Advanced design, first tests
- Review with external experts
- Next: full quarter disc prototype

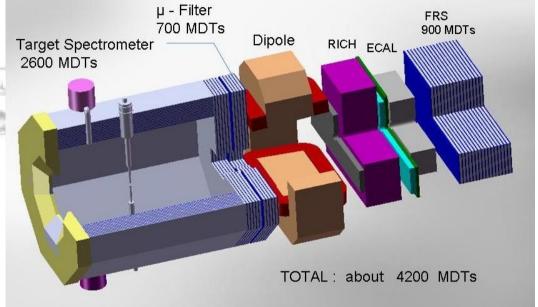
Basic components:

- SiO₂ radiator disc
- Focusing element
- Optical bandpass filter
- MCP PMT for photon readout in magnetic field
- ASIC for electronic readout

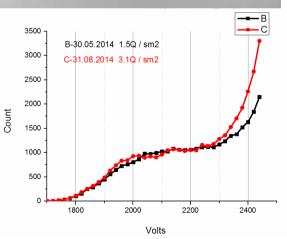

Muon Detector System

Muon system rationale:

- Low momenta, high BG of pions
- Multi-layer range system


Muon system layout:

- Barrel: 12+2 layers in yoke
- Endcap: 5+2 layers
- Muon Filter: 4 layers
- Fw Range System: 16+2 layers
- Detectors: Drift tubes with wire & cathode strip readout

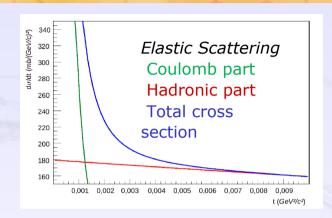


System status

- Range system tests at CERN
- Aging tests up to 3C/cm²
- Digital r/o design based on Artix7

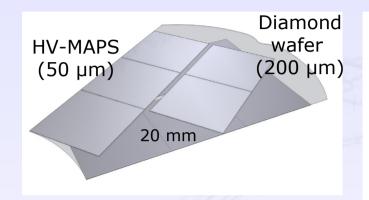
Luminosity Detector

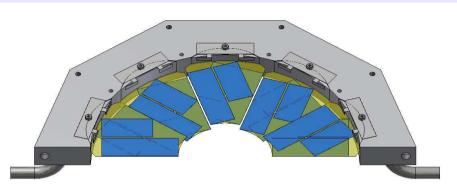
Elastic scattering:


- Coulomb part calculable
- Scattering of p at low t
- Precision tracking of scattered p
- Acceptance 3-8 mrad

Detector layout:

- Roman pot system at z=11 m
- Silicon pixels (80x80 µm²): 4 layers of HV MAPS (50 µm thick)
- CVD diamond supports (200 μm)
- Retractable half planes in sec. vacuum

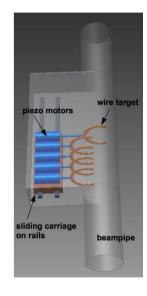

HV MAPS:


- Development for Mu3e Experiment at PSI
- Active pixel sensor in HV CMOS: faster and more rad. hard
- Digital processing on chip
- Testbeam results: S/N ~ 20, Efficiency ~99.5%

Luminosity Detector

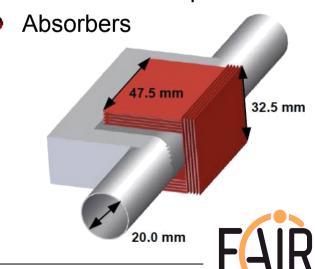
Project status:

- Cooling system prototype tested
- Mechanical vessel and vacuum system prototype tested
- CVD diamond supports available
- TDR was reviewed internally with external experts
- → Recommendations: implement more testbeam results, further simulations, material tests
- HV MAPS concept adopted for ATLAS upgrade
- Radiation test results from ATLAS
- TDR submitted to FAIR


Hypernuclear Setup

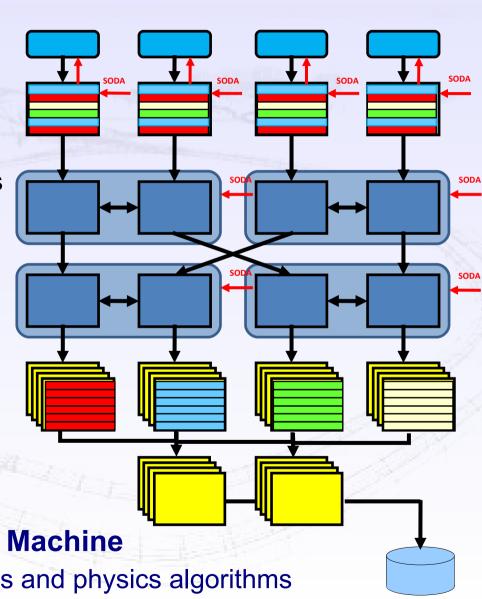
Principle:

- Produce hypernuclei from captured Ξ
- **Modified Setup:**
- Primary retractable wire/foil target
- Secondary active target to capture ≡ and track products with Si strips
- HP Ge detector for γ-spectroscopy


Primary Target:

- Diamond wire
- Piezo motored wire holder

Active Secondary Target:


Silicon microstrips

PANDA Data Acquisition

Self triggered readout

- Components:
 - Time distribution: SODA
 - Intelligent frontends
 - Powerful compute nodes
 - High speed network
- Data Flow:
 - Data reduction
 - Local feature extraction
 - Data burst building
 - Event selection
 - Data logging after online reconstruction

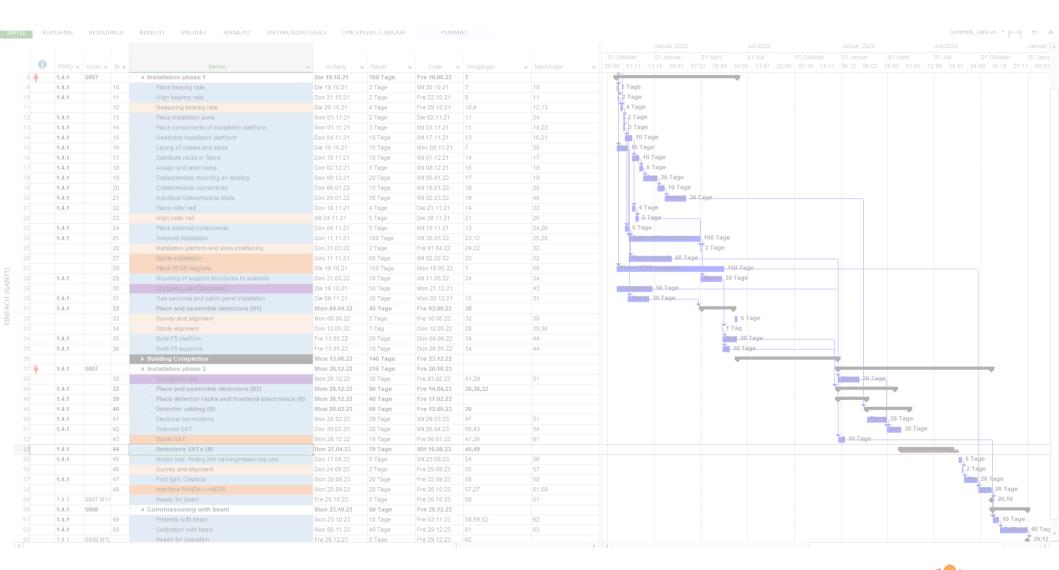
Detector Frontends

Data
Concentrators

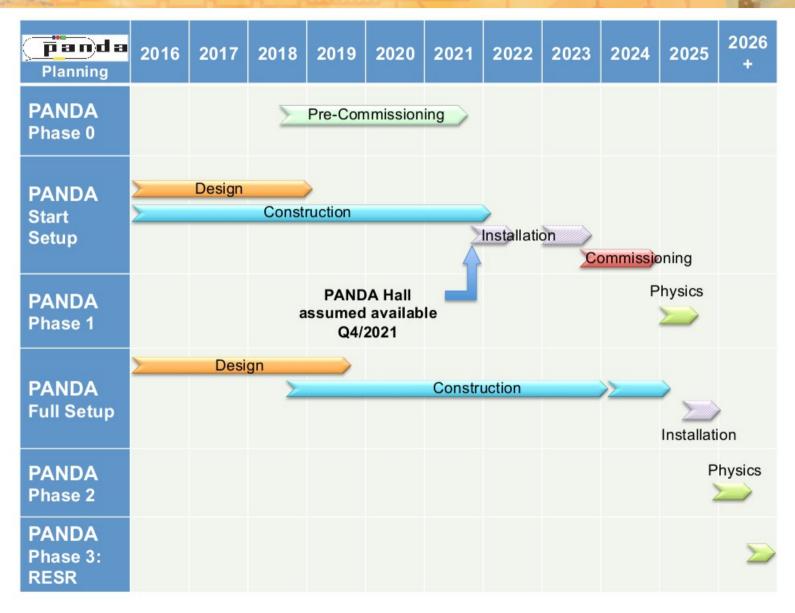
Burst Building Network

Compute Nodes: 1st level selection

Computer Farm: 2nd level selection


Storage

→ Programmable Physics Machine


Online selection schemes and physics algorithms are a key for successful measurements

Schedule and Summary

PANDA Schedule Overview

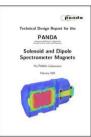
PANDA TDR Schedule

- Luminosity Detector
- Barrel Time of Flight
- Forward Time of Flight
- Forward Tracking

Submission 2018/19:

- GEM Tracker
- Detector Controls
- DAQ and Computing

Phase 2:


- Hypernuclear Setup
- Pellet Target
- Disc DIRC
- Forward RICH

System	Submission ExpectedSubmis	(Approval) Expected M3
PANDA	A PHASE 1	
Target Spectrometer EMC	学の語の日本	08/08/2008
Solenoid	The street	05/21/2009
Dipole		05/21/2009
Micro Vertex Detector (MVD)		02/26/2013
Straw Tube Tracker (STT)		01/29/2013
Cluster Jet Target	1.57	08/28/2013
Muon System		09/22/2014
Forward Shashlyk Calorimeter		03/03/2016
Barrel DIRC	22/9/2016	9/2017
Luminosity Detector	30/3/2017	12/2017
Barrel Time of Flight (TOF)	11/4/2017	12/2017
Forward TOF	6/2017	12/2017
Forward Tracking	10/2017	5/2018
Controls	12/2017	9/2018
DAQ	12/2018	6/2019
Planar GEM Trackers	12/2018	6/2019
PANDA	A PHASE 2	
Endcap Disc DIRC	9/2017	3/2018
Forward RICH	12/2017	6/2018
Pellet Target	12/2017	6/2018
Hypernuclear Setup	9/2018	3/2019
		Ctatus 11/01/201

Status 11/04/2017

For the items "Interaction Region", "Supports" and "Supplies" no TDRs are planned, only specification documents.

Computing TDR together with FAIR Computing TDR: FAIR Computing CDR mid of 2018

Summary

Present Status of PANDA

- Most Phase 1 detector TDRs complete in 2017
- Preparation for Construction MoU ongoing
- Sharpened physics focus and detector start sequence

Timeline of PANDA

- All TDRs of Phase 1 to be complete by 2018
- Start of construction in 2014 for some systems
- Ready for mounting at FAIR from 2021
- Installation takes 2 years

\overline{P} ANDA & FAIR start in hadron physics with \overline{p} from 2025

- Versatile physics machine with full detection capabilities
- PANDA will shed light on many of today's QCD puzzles

The PANDA Collaboration

More than 450 physicists from 70 institutions in 19 countries

Aligarh Muslim University U Basel

IHEP Beijing U Bochum

Magadh U, Bodh Gaya

BARC Mumbai

IIT Bombay

U Bonn

IFIN-HH Bucharest

U & INFN Brescia

U & INFN Catania

NIT, Chandigarh

AGH UST Cracow

JU Cracow

U Cracow

IFJ PAN Cracow

GSI Darmstadt

Karnatak U, Dharwad

TU Dresden

JINR Dubna

U Edinburgh

U Erlangen

NWU Evanston

U & INFN Ferrara

FIAS Frankfurt

LNF-INFN Frascati

U & INFN Genova

U Glasgow

U Gießen

Birla IT&S, Goa

KVI Groningen

Sadar Patel U, Gujart

Gauhati U, Guwahati

IIT Guwahati

Jülich CHP

Saha INP, Kolkata

U Katowice

IMP Lanzhou

INFN Legnaro

U Lund

HI Mainz

U Mainz

U Minsk

ITEP Moscow

MPEI Moscow

U Münster

BINP Novosibirsk

Novosibirsk State U

IPN Orsay

U & INFN Pavia

Charles U, Prague

Czech TU, Prague

IHEP Protvino

PNPI St. Petersburg

U of Sidney

U of Silesia

U Stockholm

KTH Stockholm

Suranree University

South Gujarat U, Surat

U & INFN Torino

U & INFIN TOTILIO

Politecnico di Torino

U & INFN Trieste

U Tübingen

TSL Uppsala

U Uppsala

U Valencia

SMI Vienna

SINS Warsaw

TU Warsaw

