Standard Model of Particle Physics

Higgs Properties

Christoph Anders 6. Juli 2016

Big thank you to Prof. S. Lai! (this is inspired by his lecture)

- Interesting mass range, but: What is the mass exactly?
- Observed $H \rightarrow$ bosons, what about fermions?
- Spin & couplings?
- Production modes?

Mass Distributions

- High mass resolution: only $H \rightarrow \gamma\gamma$ and $H \rightarrow ZZ \rightarrow 4I$ matter
- Low resolution:
 - $H \rightarrow \tau \tau$ and $H \rightarrow WW \rightarrow I \nu I \nu$ suffer from final state neutrinos
 - H→bb measured in jets (less precise than photons and leptons)

Mass Distributions

- High mass resolution: only $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ \rightarrow 4I$ matter
- Low resolution:
 - $H \rightarrow \tau \tau$ and $H \rightarrow WW \rightarrow I \nu I \nu$ suffer from final state neutrinos
 - H→bb measured in jets (less precise than photons and leptons)

Measuring the mass: Calibration of inputs

Good understanding the energy/momentum scale for photons, electrons and muons is critical!

- use Z→µµ/ee, J/Ψ→µµ/ee for µ and e calibration
- · also useable for photons + $Z \rightarrow II\gamma$
- in-depth calorimeter knowledge

The mass spectra

Use maximum likelihood estimator for m_H

• NB: Each channel has more than 1 category (2 plots = simplification!)

ATLAS results

Channel	Mass measurement [GeV]			
$H\to\gamma\gamma$	$125.98 \pm 0.42 (\text{stat}) \pm 0.28 (\text{syst}) = 125.98 \pm 0.50$			
$H \to ZZ$ llll	$124.51 \pm 0.52 (\text{stat}) \pm 0.06 (\text{syst}) = 124.51 \pm 0.52$			
Combined	$125.36 \pm 0.37 (\text{stat}) \pm 0.18 (\text{syst}) = 125.36 \pm 0.41$			

ATLAS measurement (stat. limited!)

CMS ATLAS combination

Mass measurements and electro weak vacuum stability?

Extrapolation to planck scale: is the electro weak vacuum stable? Depends critically on values of m_{top} and m_H.

Still consistent with stable vacuum Need more precise measurements, e.g. ILC

if meta-stable, maybe life-time of EWV longer than age of universe???

Couplings to bosons AND fermions?

Observation of new particle by ATLAS/CMS decaying to **yy**, **ZZ**, **WW** (all bosons)

particle is a boson

• coupling to fermions only indirectly seen in loops:

H→ff searches

Advantage: large branching ratios

Disadvantage: **bb** and $\tau \tau$ are hard to distinguish from jet background

Use more distinct production processes to decrease backgrounds

WH/ZH production for $H \rightarrow bb$

 leptonic or neutrino decay products of W/Z reduce backgrounds

VBF production for $H \rightarrow \tau \tau$

• VBF jets (forward & separated) help distinguish signal from background

CMS H→bb

Main decay modes: WH→Ivb, ZH→I+I-bb, ZH→vvbb

Require: 2 b-tagged jets and

1 lepton + E_T^{miss} or oppositely charged lepton pair in Z mass window or large E_T^{miss}

11

Split in categories of p_T^V (V=W/Z), exploit differing signal to background ratios

In each category use BDT to separate signal from background, using m_{bb} , p_T^V , b-tagging, angular separation

CMS H→bb

ATLAS $H \rightarrow \tau \tau$

Exploit: Production ggF and VBF All tau decay combinations

- categorize events into categories sensitive to ggF and VBF production
- build boosted decision tree based on kinematic variables to separate signal from background

Event categories

VBF category

- 2 high p⊤ jets
- large separation in η

better S/B ratio

Boosted categorysensitive to ggFevents with extra jets

 Higgs at higher p⊤ to balance jets = "boosted" = taus closer together

 $\Delta R(\tau_1, \tau_2)$

Di-tau mass reconstruction

15

Due to undetected neutrinos mass met fully constrained. Need to infer through E_T^{miss}

Missing Mass calculator (MMC)

- Assumes E_T^{miss} only due to neutrinos
- takes into account the most probable neutrino kinematics to reconstruct di-tau mass

Typical resolution for $Z \rightarrow \tau \tau$

channel	mass resolution				
lep-lep	16%				
lep-had	16%				
had-had	14%				
MMC mass is the most					

separating in BDT

BDT outputs

Clear excess of data above background prediction

Excess consistent with SM Higgs prediction

Results

Significant excess of events seen across all datasets, channels, categories observed (expected) significance corresponds to 4.50 (3.50)

best fit signal strength is $\mu = \sigma/\sigma SM = 1.42+0.44-0.38$

CMS: 3.2σ (3.7σ) evidence for H→ττ decays

CMS/ATLAS combination: 5.5σ —> Discovery!

Signal strength summary

- Signal strength μ = measured/SM
- all channels seem to be consistent with the SM expectation

global ATLAS+CMS:

Higgs production

Higgs boson coupling scale factors

Measurements so far are always mixing different production processes, production and decay, and tree vs loop level Higgs couplings, e.g.:

production & decay mix fermion/boson & tree/loop mix

Can separate out effects by using coupling scale factors κ_i

$$g_{Hff} = \frac{\sqrt{2}m_f}{\upsilon}, \qquad g_{HVV} = \frac{2m_V^2}{\upsilon} \implies g_{Hff} = \frac{\kappa_f}{\upsilon} \cdot \frac{\sqrt{2}m_f}{\upsilon}, \quad g_{HVV} = \frac{\kappa_V}{\upsilon} \cdot \frac{2m_V^2}{\upsilon}$$

SM: $\kappa_i = 1$

$$\begin{array}{lll} & (\sigma \cdot \mathrm{BR}) \left(\mathit{ii} \to \mathrm{H} \to \mathit{ff} \right) = \frac{\sigma_{\mathit{ii}} \cdot \Gamma_{\mathit{ff}}}{\Gamma_{\mathrm{H}}} \\ & \text{Introduce parameter } \kappa_{i} \text{, } \kappa_{f} \text{ parametrizing new physics} \\ & \text{factors} \\ & \textit{Example: ggH} \to \gamma\gamma \\ & (\sigma \cdot \mathrm{BR}) \left(\mathrm{gg} \to \mathrm{H} \to \gamma\gamma \right) \ = \ \sigma_{\mathrm{SM}}(\mathrm{gg} \to \mathrm{H}) \cdot \mathrm{BR}_{\mathrm{SM}}(\mathrm{H} \to \gamma\gamma) \end{array}$$

SF for total width

SF for ii, ff

$\frac{\sigma_{\rm ggH}}{\sigma_{\rm ggH}^{\rm SM}}$	=	$\left\{ \begin{array}{l} \kappa_{\rm g}^2(\kappa_{\rm b},\kappa_{\rm t},m_{\rm H}) \\ \kappa_{\rm g}^2 \end{array} \right.$	$\frac{\Gamma_{WW^{(*)}}}{\Gamma_{WW^{(*)}}^{SM}}$	=	κ_W^2	$\frac{\Gamma_{t\overline{t}}}{\Gamma_{t\overline{t}}^{\underline{SM}}} = \kappa_t^2$
$\frac{\sigma_{\rm VBF}}{\sigma_{\rm VBF}^{\rm SM}}$	=	$\kappa_{\rm VBF}^2(\kappa_{\rm W},\kappa_{\rm Z},m_{\rm H})$	$\frac{\Gamma_{ZZ^{(*)}}}{\Gamma^{SM}}$	=	κ_Z^2	$\frac{\Gamma_{gg}}{\Gamma_{gg}^{SM}}$
$\frac{\sigma_{\rm WH}}{\sigma_{\rm WH}^{\rm SM}}$	=	κ_W^2	$\Gamma_{ZZ^{(*)}}$ $\Gamma_{b\overline{b}}$		2	$\frac{\Gamma_{c\bar{c}}}{\Gamma_{SM}} = \kappa_t^2$
$\frac{\sigma_{\rm ZH}}{\sigma_{\rm ZH}^{\rm SM}}$	=	κ_Z^2	$\Gamma_{b\overline{b}}^{SM}$	=	κ _b	$\Gamma_{c\overline{c}}$ $\Gamma_{s\overline{s}}$ $-x^2$
$\frac{\sigma_{t\bar{t}H}}{\sigma^{SM}}$	=	κ_t^2	$\frac{\Gamma_{\tau^-\tau^+}}{\Gamma_{\tau^-\tau^+}^{SM}}$	=	κ_{τ}^2	$\Gamma_{s\overline{s}}^{SM} - \kappa_{b}$ $\Gamma_{u=u+}$
ttH						$\frac{\Gamma_{\mu^{-}\mu^{+}}^{SM}}{\Gamma_{\mu^{-}\mu^{+}}^{SM}} = \kappa_{\tau}^{2}$
$\frac{\Gamma_{\gamma\gamma}}{\Gamma_{\gamma\gamma}^{\rm SM}} = \begin{cases} \kappa_{\gamma}^2(\kappa_{\rm b}, \kappa_{\rm t}, \kappa_{\rm t}, \kappa_{\rm W}, m_{\rm H}) \\ \kappa_{\gamma}^2 \end{cases}$			Fundan	nental parameters:		
$\frac{\Gamma_{Z\gamma}}{\Gamma_{Z\gamma}^{SM}} = \begin{cases} \kappa_{(Z\gamma)}^2(\kappa_{\rm b}, \kappa_{\rm t}, \kappa_{\rm t}, \kappa_{\rm W}, m_{\rm H}) \\ \kappa_{(Z\gamma)}^2 \end{cases}$			$\kappa_W, \kappa_Z, \kappa_b, \kappa_\tau, \kappa_t$			

also useful to fix parameters to same value: $\kappa_{\rm V} = \kappa_{\rm W} = \kappa_{\rm Z}$ $\kappa_{\rm V} = \kappa_{\tau} = \kappa_{\rm t}$ e.g. to test boson vs fermion

Higgs boson couplings

Define κ_V positive: most processes are **not** sensitive to relative sign of κ_F

Higgs boson couplings

Define κ_V positive: most processes are **not** sensitive to relative sign of κ_F

Higgs boson coupling

Higgs boson coupling

Non-SM contributions?

Effective Higgs-gluon or Higgs-photon couplings can be altered by non-SM contributions in loops

Spin and parity

- SM Prediction for the Higgs boson: $J^P = O^+$
- Simple Alternate Hypotheses: Pseudoscalar: J^P = 0⁻
 Vector, Pseudovector: J^P = 1⁻, 1⁺
 Tensor/Pseudotensor: J^P = 2^{+/-}

- Complex Alternate Hypotheses: admixture state
 i.e. |Higgs > = α |even-parity > + β |odd-parity >
 ????
- Likelihood ratio (based-upon hypotheses) often the final test statistic
- NB: Particle is a boson, otherwise decays to **yy**, **ZZ**, **WW** (conservation of angular momentum)
- Landau-Yang Theorem: S≠1 if it decays to di-photon

Collins-Soper Frame

'7

- use Higgs boson rest-frame
- define Collins-Soper axis as bisector between two proton vectors
- Collins-Soper angle: between outgoing photon and axis
- minimizes effect of initial state radiation

$$|\cos\theta^*| = \frac{|\sinh(\Delta\eta^{\gamma\gamma})|}{\sqrt{1 + (p_{\rm T}^{\gamma\gamma}/m_{\gamma\gamma})^2}} \frac{2p_{\rm T}^{\gamma1}p_{\rm T}^{\gamma2}}{m_{\gamma\gamma}^2}$$

Before selection:

S=0: isotropic (flat distribution) S=2: depends on qq/gg fractions

$$\begin{split} &100\%\,gg\,:\frac{dN}{d\cos\theta^*}=1-6\cos^2\theta^*+\cos^4\theta^*\\ &100\%\,q\bar{q}\,:\frac{dN}{d\cos\theta^*}=1-\cos^4\theta^* \end{split}$$

Distributions

Hypothesis testing

Form likelihood ratios for different hypothesis vs the SM one.

Use CL_S (see last week) to exclude

CMS results

non-SM admixture states not fully excluded

Higgs production and ttH

Slide by S. Lai

Higgs and 2 tops in final state —> spectacular signature

Problem: low cross-section, top pair background

95% observed (expected) limits on signal strength
6.7 (4.9) x SM for tt(H→γγ)
4.1 (2.6) x SM for tt(H→bb)

CMS ttH

5 channels: bb, $\tau \tau$, $\gamma \gamma$, WW,ZZ

μ = 2.8±1.0 p-value: 3.4σ

CMS ttH

Higgs self coupling

Reminder, Higgs potential:

$$\mathcal{L}_{Higgs} = D_{\mu}\phi^{\dagger}D^{\mu}\phi - V(\phi)$$

 $V(\phi) = -\mu^{2}\phi^{\dagger}\phi + \frac{\lambda}{2}(\phi^{\dagger}\phi)^{2}$

- What are the lambdas?
- After electroweak symmetry breaking can be expanded to: $\mathcal{V} = \frac{1}{2}M_h^2h^2 + \lambda vh^3 + \frac{\tilde{\lambda}}{4}h^4$
- SM expectation: $\lambda = \tilde{\lambda} = M_h^2/2v^2 \sim 0.13$ needs to be verified

Self coupling

- h³ term might be measurable at the high luminosity LHC, but need 14TeV and 3 ab⁻¹ (= 3000 fb⁻¹ !!!)
- Measure SM di-Higgs HH production

• Challenges: small cross section (—> need large BR: bb, WW, $\tau\tau$), large backgrounds

Total cross-section measurement

Differential measurements (N_{jet})

Differential measurement (pTH)

