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Overview

PART I

 Cross Sections and QED tests

 Accelerator Facilities + Experimental Results

PART II

 Tests of QED in Particle Decays and Resonances

 QED Radiative Effects
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Measurement of Cross Sections

e+e- → X
(e- e- → X)

 test predictions of QED
 α

em
=1/137 is small → perturbative theory! 

 Evolution at higher energies?
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Measurement of Cross Sections

e+e- → X

 test predictions of QED
 α

em
=1/137 is small → perturbative theory! 

 Evolution at higher energies?

Reactions depend on center of mass → many different accelerators

Synchrotron Radiation Law::
P∝

E4

R2

(e- e- → X)

 large accelerators required for high energies



A.Schöning                                                       7                     Standard Model of Particle Physics SS 2016

List of ee-Accelerators
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AdA Accelerator
● First e+ e- collider ever
● AdA = Anello di Accumulazione (Frascati/Orsay, 1961-64)  
● Energy: 250 MeV Electrons x 250 MeV Positrons
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AdA Accelerator

Motivation:
● Bruno Touschek: excite the dielectric vacuum to create 
  vector mesons (e.g. rho meson predicted to be light!)

● First e+ e- collider ever
● AdA = Anello di Accumulazione (Frascati, 1961-64)  
● Energy: 250 MeV Electrons x 250 MeV Positrons

Note: at that time all new particles had been discovered in
hadronic interactions (ie. proton beams)!
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Dielectric Vacuum

bare electrical charge shielded 

by induced dipoles 

classical dielectric

bare charge shielded 
by vacuum polarisation

“excited dielectric”

rho-meson
high energy
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AdA Accelerator

Motivation:
● Bruno Touschek: excite the dielectric vacuum to create 
  vector mesons (e.g. rho meson predicted to be light!)

● First e+ e- collider ever
● AdA = Anello di Accumulazione (Frascati, 1961-64)  
● 250 MeV Electrons  x  250 MeV Positrons

Note: at that time all new particles had been discovered in
hadronic interactions (ie. proton beams)!

“Revolutionary” concept as the rho-meson is electrically neutral
and was predicted to explain (as carrier) strong interactions

Remark: Indeed, Touschek was right. The strong force can be 
tested in e+ e- collisions. But not in AdA (too low luminosity, too low energy)
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AdA Challenges I
 How to store electrons and positrons?

magneto-optical storage ring 
(→ mastered at this time, synchrotron radiation facilities)

cavity
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AdA Challenges I
 How to store electrons and positrons?

magneto-optical storage ring 
(→ mastered at this time, synchrotron radiation facilities)

 How to produce positrons?
by photon conversions:  γ → e+ e-  (→ conversion target)

cavity

e-

e+
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AdA Challenges I
 How to store electrons and positrons?

magneto-optical storage ring 
(→ mastered at this time, synchrotron radiation facilities)

 How to produce positrons?
by photon conversions:  γ → e+ e-  (→ conversion target)

 How to produce the photons (E > 5-10 MeV)

Bremsstrahlung from high energetic electrons at target 
e- N → γ e- N  using a linear electron accelerator  (→ also known)

cavity
e-

e-

e-

e+
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AdA Challenges I
 How to store electrons and positrons?

magneto-optical storage ring 
(→ mastered at this time, synchrotron radiation facilities)

 How to produce positrons?
by photon conversions:  γ → e+ e-  (→ conversion target)

 How to produce the photons (E > 5-10 MeV)

Bremsstrahlung from high energetic electrons at target 
e- N → γ e- N  using a linear electron accelerator  (→ also known)

 How to fill the storage ring with electrons and positrons???
place the conversion target inside the storage ring 

cavity
e-

e-

e-

e+

e-

e-

e- e+
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AdA Concept

Electron Injection cavity

e-

e-

e- e+

cavityPositron Injection

e-

e-

e- e+

3m
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AdA Challenges II

B.Touschek: It is guaranteed that an electron and a positron 
necessarily meet in a single orbit because QED is CP (charge-
parity) invariant

Note: AdA is a single storage ring: electrons and positrons see same optics
but in reverse direction

 How to make electrons and positrons collide?
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AdA Challenges II

B.Touschek: It is guaranteed that an electron and a positron 
necessarily meet in a single orbit because QED is CP (charge-
parity) invariant

If a ring collider works, then CP(T) invariance of QED is confirmed!!!

Note: AdA is a single storage ring: electrons and positrons see same optics
but in reverse direction

 How to make electrons and positrons collide?

Note: CP(T) invariance says that a positron can be regarded as an electron 
traveling in reverse time direction.

Touschek was right, in a very short time AdA was commissioned and 
electron-positron collisions were observed.

This is much more than just a technical (engineering) achievement!
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AdA Challenges III

Definition of “Luminosity”:

 How to measure that electron-positron collisions take place?

 How many collisions?

R = L σ
 

Relation between rate of events and cross section of process

e+ e-
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Luminosity Measurement in Ring

Collider (gaussian beams):

L=
N 1 N 2 f

4π A

N
1
 and N

2
 and beam cross section 

A are unknown and have to be 
precisely measured → difficult

More practical ansatz – use reference process(es):

e+ e- → e+ e-

e+ e- → γ γ

Both processes are forward peaked!

ultrarelativistic approx. (Bhabha 1936)

t-pole

annihilation process (Compton-like)
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Bhabha Scattering
dσ
dΩ

(e+ e−
→ e + e−

) = α
2

2 s ( u
2
+ t2

s2 +
s2
+ u2

t2
+

2u2

st )
annihilation diagram

scattering diagram

annihilation scattering interference

s=qμ qμ

qμ

s-pole from photon propagator

t=qμqμ t-pole from photon propagator

t

qμ
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Photon Pair Production
dσ
dΩ

(e+ e−
→ γγ)= α

2

2 s ( u
2
+ t2

tu )
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Photon Pair Production

qμ
t=qμqμ t-pole from electron propagator

dσ
dΩ

(e+ e−
→ γγ)= α

2

2 s ( ut +
t
u )
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Photon Pair Production

qμ

u-pole from crossed diagram

t=qμqμ t-pole from electron propagator

dσ
dΩ

(e+ e−
→ γγ)= α

2

2 s ( ut +
t
u )

qμ



A.Schöning                                                       27                     Standard Model of Particle Physics SS 2016

Sketch of Luminosity 
Measurement

e+ e-
γ / e+

γ / e-

luminosity detector
Measurement: rates R

1
 and R

2
 (in counts/s) 

Use: R = L σ
Detector

 ↔  L = R/ σ
Detector 

σDetector=∫Detector

dσ
dΩ

dΩ acceptance calculation is
an experimental task!

rate R
1

rate R
2

σ
Detector

 is the observed cross section ≠  total cross cross section
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Background for Luminosity 
Measurement

I
1
(e-)

γ / e+

γ / e-

rate R
1

rate R
2

Problem: beam induced background, e.g. electron-rest gas scattering)

Ansatz: 

R1 = a1 I 1 + b I 1 I 2= I 1 (a1+ b I 2)

R2 = a2 I2 + b I1 I 2 = I2 (a2+ b I 1)

BG lumi
I
2

R
1

lumi

BG

background (BG)I
2
(e+)
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The Big e+e- Accelerators

 SPEAR (Stanford Positron Electron Accelerator Ring) at SLAC 
   (1974-1990), s1/2=3-8 GeV, Discovery of the Charm Quark

 PETRA (Positron Electron Tandem Ringanlage) at DESY (1978-1986),
  s1/2=38 GeV, Discovery of Gluon-Jets

 TRISTAN at KEK, Japan (1986-1989)   s1/2=50-64 GeV 
  (discovery of the “desert”)

 Large Electron-Positron Collider, Geneva (1988-2000): 
  s1/2=90 GeV (LEP I, Z-factory),     s1/2=200 GeV (LEP II, WW factory)  

 Stanford Linear Accelerator at SLAC, Stanford (1991-1998)
  s1/2=90 GeV (SLC, Z-factory) 
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SPEAR at SLAC
 Stanford Positron Electron Accelerator Ring (1974-1990),

  s1/2=3-7 GeV, Discovery of the J/Psi

Discovery of the Charm Quark Ψ(2S)→ J /Ψπ
+
π
−
→ e+ e−

π
+
π

−
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Quark-Pair Production

e+ e- → c c-
e+

e- c

c-

z=2/3 e

Resonant Rho production
 later

similar to muon-pair production

dσ
dΩ

(e+ e−
→ c c̄)=

α
2q2

2 s (u
2
+ t 2

s2 )
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PETRA at DESY
 Positron Electron Tandem Ring Anlage (1978-1986),

  s1/2=38 GeV, Discovery of Gluon Jets

predicted by
QCD!!!
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Tasso at PETRA
QED Test:

Bhabha
scattering
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Total Muon Pair Production C.S.

d 
d t

=−
2

2

s2

t 2
u2

s2
stu=∑mi

2≈0 (only two independent)

 u2=t2s22 t s

d 
d t

=−22 2t2
s2

2ts

s4

σ =−∫−s

0
2πα2 2t2

+s2
+2ts

s4 =−2πα2 −2 /3s3
−s3

+s3

s4 =
4πα2

3s

derivation:
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Myon Pair Production

PETRA accelerator (DESY)

 e e  =
42

3s
≈

85nb
s
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Quark Pair-Production

e+ e- → c c-
e+

e- c

c-

z=2/3 e

similar to muon-pair production

dσ
dΩ

(e+ e−
→ c c̄)=

α
2q2

2 s (u
2
+ t 2

s2 )

Difficulty: 
quarks and anti-quarks are experim.
difficult to distinguish

t=−
s
2
(1∓cos θ)

u=−
s
2
(1±cosθ)

t 2+u2=
s2

2
(1+cos2θ)

TASSO (1984)

different signs
for quarks and
antiquarks

quarks and
antiquarks averaged!
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Tristan Collider at KEK
1986-1989:   s1/2=50-64 GeV 
Search for the top-quark in the “desert”
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QED Tests in e+e- collisions
Feynman 
diagram

Possible tests:
 universality of charges (leptons, quarks, ...)
 energy dependence of coupling (“running”)
 test of perturbation theory
 Lorentz structure of coupling
 propagator effect → new physics
 test crossing symmetries (→ gauge invariance)
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Measurement of R
had

Measurement of Quark Charges:

onset of 
quark thresholds

R=
e+ e−→ hadrons

e + e−
→μ

+
μ

−
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Crossing Symmetries

e- γ → e- γ

d σ
dΩ

(e+ e−
→γ γ)= α2

2 s ( ut +
t
u )

d σ
dΩ

(γe−
→ γe−

) = α2

2 s (−s
u
+
−u
s )

t→−t
s→u
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The Low Energy Limit

Thompson scattering cross section σ t =
8π

3 r e
2
=

8π
3 (

αλc

2π )
2

Electromagnetic coupling at low energy:

Q2
=−t=−(qμqμ)→0qμ

used to determine α
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The Low Energy Limit

Thompson scattering cross section σ t =
8π

3 r e
2
=

8π
3 (

αλc

2π )
2

Electromagnetic coupling at low energy:

Q2=−t=−(qμ qμ)→me
2

General cross section:

not dependent on energy! Used to determine α

e

e*
dσ
dΩ

(γ e−→γe− ) = α
2

2 s (−s
u
+
−u
s )

two terms
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Running of alpha
em

self-energy corrections

vertex corrections

α(Q=0)=1 /137 α(Q=90GeV )=1 /128

dressed charge!

 measure em. coupling for different (high) energies
 search for new physics effects at mass scale Λ

dσ
dΩ

=
dσ(QED)

dΩ (1+ s

Λ2 )

alpha is not a constant!
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Lorentz-Structure of 
Electromagnetic Interaction

Vector Current:
jV
 =  

Axial-vector Current:
j A
 =  5

in QED: ∂ jV
 = 0 (conservation of currents)

From Maxwell Equations:

∂ν∂
ν Aμ

(x) = e Jμ
(x)

electromagnetic interaction described by vector currents!
Also true at high energies?

scalar coupling:
λ = ψ̄ψ

pseudoscalar coupling:
λ = ψ̄γ

5
ψ

 lead in general to different angular distributions!
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LEP Collider

biggest electron-positron
collider with up to 200 GeV
centre of mass

4 experiments: 
ALEPH, DELPHI, L3, OPAL

LEP1: “Z-factory”

LEP2: “WW factory”
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LEP Regime

e+ e- → Z

e+ e- → W+ W-

Processes:

at LEP energies
radiative and
electroweak effects
play an important role!



A.Schöning                                                       47                     Standard Model of Particle Physics SS 2016

International Linear Collider

500 GeV electrons x 500 GeV positrons
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Backup
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Fermion-Fermion Scattering

particle-particle (here electron-proton) scattering

external leg

lowest oder perturbation theory: leading order graph (Born)
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Gamma Matrices I
Gamma matrices γμ are chosen such that γ0

  is hermitian while γk (k=1,2,3) are

anti-hermitian

The 4x4 gamma matrices can be represented by (representation where γ0 is diagonal):

(γ0) = γ0,  (γ0)μ = 1,    
(γk) = -(γk),  (γk)μ = -1 (k=1,2,3)     

We define γ5 as the hermitian matrix: γ5
  =  i γ0 γ1 γ2 γ3 ,          (γ5)2 = 1, 


k
=  0 

k

− k 0  , 
0
≝= 1 0

0 −1  , 
5
= 0 1

1 0 
With the 2x2 Pauli matrices:

1 = 0 1
1 0  ,  2= 0 −i

i 0   3= 1 0
0 −1  .

Gamma matrices anti-commute:  γi γk + γk γi   = 0    for i ≠ k 

(note several 
representations
exist)



A.Schöning                                                       51                     Standard Model of Particle Physics SS 2016

Gamma Matrices II


0
= 

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1




1
= 

0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 
2
= 

0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0

 
3
= 

0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0




5
= 

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 (in other representations
g5 is diagonal )
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