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Introduction: particle tracks in collider experiments

FoS

Big European Bubble Chamber (CERN)

From this... to this!

In large collider experiments: particles leave hits on detector layers — huge
amount! Goal: proper linking of hits.
Big difficulties: high multiplicity of tracks, hit uncertainties, physical effects

(multiple Coulomb scattering, measurement errors...), hit ambiguities
(geometry of the detector...).
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Introduction: particles in a magnetic field

» Particle in field B — Lorentz
force: Fy =q(E+vxB). q:=
charge, E := electric field, v :=
velocity.

» Case of most collider
experiments: E =0,

B=(0,0,B;):

= F=qvB;

2
mv .. .
=qvB; (in circular motions)
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=qvB; (in circular motions)

p 1
—=—==B,.
q k °

With R= % k :=curvature.

Conclusion

One can deduce rigidity (momentum over charge) of particle with known
magnetic field, and unknown curvature.



Introduction: Parametrization

Trajectory of a primary particle: helix parametrized by (k,n,¢g,2g,dg) with:
» Pseudorapidity n=—In[tan(6g/2)],
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Introduction: Parametrization

Trajectory of a primary particle: helix parametrized by (k,n,¢g,2g,dg) with:
» Pseudorapidity n=—In[tan(6g/2)],
» Azimuthal angle of the initial momentum vector ¢g (6g polar angle),

» Initial position on the z (beam) axis zo,

> Distance of closest approach dy = /DCA2 +DCA)2, (often called DCAyy).

DCA, W N - Vertex
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The Karimaki fit

Finds circle curvature, direction and position parameters of a track with least
square method. Assumptions are:
> Only spatial hit uncertainties (no multiple scattering, no inhomogeneous
magnetic field),
> All hits are part of the track.
Least square method is the minimization of:
2

i

1 =Zwe

1
where w; := weights and €; := measurement residuals:
V(xi-a)2+(yi-b2 R

x; and y; := measured coordinates.

€ ==

Residual €;



The Karimaki fit

Minimizing problem solved with approximation:

G;zi% 1[(x,—a)2+(y ~b)? R2]

under the condition that le; < R|.

|
AMany drawbacks: non-Gaussian...

Solution:

» Use curvature k instead of R (A most important change!),
» Distance of closest approach dy and direction of propagation @,

> Used because not correlated and good straight track limit behavior (when
R — 00).

Equation becomes:
1 5 ) 1 5
€= Ekr’- — (1 + kdo)r;Sln((I)O —([),') + EkdO +dy

with r; and ¢; polar coordinates of /.



Parameters are Gaussian and behave well at the straight track limit.
Rewrite now ¢; as:

€; = (1+kdo)n;,
with ;= kr2 = rjsin(®g —¢;) +6, k=1 K and 6 =
i i i 0~ @i , 2 T+kdy

1+%kd0d
I+kd0 0-

= y2 = (1+kdg)%42,
X% = §W;n,2-

. ______________________________________________________|
In practice, minimizing 2 with k,dg,®g — minimizes the true 752 !
Procedure:

1. minimize the P with respect to x, ®g and &,

Result:

State vector (k,dg,®@q).
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The Karimaki fit

Parameters are Gaussian and behave well at the straight track limit.
Rewrite now ¢; as:
€j = (1+kdg)n;,

. . 1+ kd
with n;:kriz—r,-5|n(<l>0—¢,-)+6, K= %1%0,0 and 6 = _1+2k_do0d0'

=2 = (1+kdg)’22,

2 2
xP= ?Wm,- .

. ______________________________________________________|
In practice, minimizing 2 with k,dg,®g — minimizes the true )(2 !

Procedure:

1. minimize the ? with respect to x, ®g and &,
2. solve the curvature and distance parameters k and dy by inverting their
expressions.
Result:
State vector (k,dg,®@q).



The Karimaki fit: error estimation

Parameters are Gaussian distributed, error estimation done in respect to that.
Error matrix V:
Oe; O€;
(V) =sw— =L,
i 0pj Opk

with p; . := parameter.

» Corrections on error on the fitting of k, ®g and dp, due to the

minimization of y2 and not y2, are added.
> Can be implemented simply and computed quickly.



from it — iterative procedure

In event reconstruction: fit first particle trajectories, then determine vertex
Need:

> algorithm which
calculates parameters

and errors

> according to a new
vertex (x,¥g)-
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The Karimaki fit: event reconstruction

In event reconstruction: fit first particle trajectories, then determine vertex
from it — iterative procedure.

Need:

> algorithm which
calculates parameters
and errors
> according to a new
vertex (x,¥g)-

Solution — transformation:
> dO — d6’

/ Transformation
> &g — @,

b &
0%.%)

» k is invariant.

@ is also transformed, not shown here since not on the
same plane.



The Karimaki fit: event reconstruction

B A
CI?%J =arctan Yk d(') =

1+U
k is invariant

A=2A +k(A% +22),

B k(XO XO)+(1+kd0)SInCD0,
C=-k(yo y6)+(1 + kdg) cos @,
U=V1+kA

Ay = (xg —x5)sin@g — (yo — y) cosPg +dp,
(]

A" (XO XO)COSCI)0+(y0 yo)smCI)O

The new error matrix is then

=JvJT

where J is simply the Jacobian derivative matrix




» AKarimaki: fits a circle, not a
helix!

> To get a helix, need 6j:

N

tanfg = 42
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The Karimaki fit: from circle fitting to helix fitting

» A\Karimaki: fits a circle, not a

helix! Conclusion
» To get a helix, need 6p: The Karimaki fit solves a nonlinear
least squares problem with an elegant
s solution:
A
> Gaussian behaved fitted
parameters,

» Computes value of the )(2 quickly
(one of the quickest fits!),

» Calculates the covariance matrix
of the fitted parameters.

tanfg = %



Physical effects

Most dominant effect that will modify particle path:
» Multiple Coulomb scattering,
» Described roughly by a Gaussian distribution.
Standard deviation of the planar scattering angle (Highland equation):

13.6 MeV
Oestimated =00 = WZ\/ L/Xo[1+0.038In(L/Xp)]

Where p:= momentum, fc:= velocity, Z := charge in electron charge units and
L/Xg = thickness of the scattering material in radiation length.

| L

Hit uncertainties— also affects proper track reconstruction.
» Drift chamber resolution: about 100pum
» Silicon detector resolution: about 10pm



The Kalman filter: case of no present magnetic field

The Kalman filter and the Karimaki fit: same basic principles, but Kalman filter
has more advantages.

Random process noise w (e.g Coulomb scattering) is added to the
transformation:

xj = Fi_1Xj_1 +wj_1.
xj = state vector, F;_1 := transformation.

State vector not measured directly. Quantities my are measured by the
detector k, related to the state vector with linear function hy:

my = hk(Xk)+€k.

> €) IS a measurement noise,

> Implementation of discrepancy between a measured and true value of the
detector.

» A\This part extremely dependent on the experiment!



1. Filtering: xy =x{(‘_1 + K| - (residual of prediction),
> K := Kalman gain matrix.

| Prediction

w

moothing

o

=
/
=
.

[tering

Multiple Coulomb scattering angle

Operations also applied on the covariance matrix! Also update of y2 after each
iteration. = =) = = = DG g3



1. Filtering: x; = x ~1 4 Ky - (residual of prediction),
> Ky = Kalman gain matrix.
2. Prediction: X;(‘+1 = Fex.

| Prediction

w

moothing

o

e

T
—
T

[tering

Multiple Coulomb scattering angle

Operations also applied on the covariance matrix! Also update of )(2 after each
iteration. = =) = = = DG g3



The Kalman filter: the three operation steps

1. Filtering: xj = x ~1 4 Ky - (residual of prediction),
> Ky = Kalman gain matrix.

2. Prediction: xll(‘ 1= Frxk.

3. Smoothing: x,'=xj +Ax-(x] 1 - ll<(+1)'
> Agi= Smoother gain matrix.

Prediction

)]

moothing

/ ) Filtering

Multiple Coulomb scattering angle

Operations also applied on the covariance matrix! Also update of y2 after each
iteration.



expansion.

In magnetic field, track propagator is nonlinear:
» Has to be approximated by a linear function,

> Done in the usual way by replacing it by first two terms of Taylor
ok
et

1 = Fkxk (extrapolation of state vector) becomes:

X[I((+]_ = fk(xk)

Curved particle
track

DAC 16723
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Pattern recognition: seed finding

First step: Seed finding, in regions of low track density (outer detector regions).

Schematic view of the seeding algorithm.

primary
vertex

Track seed: neighbor clusters roughly
compatible with a track shaped as a helix
pointing to the interaction.




Pattern recognition: track extension

Next step: track extension.
» When another layer is reached, a "tree" of possible extensions calculated,
most probable candidate eventually selected with Kalman filter,
» When a cluster is associated with existing track, track parameters and
covariance matrix are updated,
» Tracks usually refitted by the Kalman filter in the outward direction,
» Sometimes a final step of second inward propagation done.

Tree of possible extensions to a track.

Prolongation hypotheses are made, taking into account multiple scattering. The best track
candidate (in blue) is chosen according to the quality of the whole track.
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Conclusion: new tracking techniques

» Kalman filter: most used— implementation of multiple scattering effects,
measurement errors, (inhomogeneous) magnetic field.

» Has some drawbacks: very complicated implementation, iterative— starts
from the beginning when something wrong.

» New techniques available— broken line fit:

Residual

Broken line

Fast track fit (Karimaki)+detailed fit (reduction of residuals) allowing kinks.



Conclusion
What did we learn today?

v

Particles in large collider experiments follow a helix.

» Fitting a circle or a helix is difficult (nonlinear problem) — use new
parametrization!

v

Physical effects make track reconstruction even more difficult.
Kalman filter takes physical effects into account and
> Predicts,
> Filters,
> Smooths the state vectors.
A lot more of methods and techniques available: broken line fit, Hough
transformations, multiple scattering fit, use of templates...

v

v
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