Master seminar: Particle tracking and identification at high rates
 Report: An introduction to track reconstruction in collider experiments

Alissa Fink
University of Heidelberg

December 1, 2017

Introduction: particle tracks in collider experiments

Big European Bubble Chamber (CERN)

From this...

In large collider experiments: particles leave hits on detector layers \rightarrow huge amount! Goal: proper linking of hits.
Big difficulties: high multiplicity of tracks, hit uncertainties, physical effects (multiple Coulomb scattering, measurement errors...), hit ambiguities (geometry of the detector...).

Overview

Introduction
Particle tracks in collider experiments
Particles in a magnetic field
Parametrization

Fitting
The Karimaki fit
Physical effects
The Kalman filter
The Kalman filter: case of no present magnetic field The extended Kalman filter

Pattern recognition
Seed finding
Track extension
Conclusion
New tracking techniques
Summary

Introduction: particles in a magnetic field

- Particle in field $B \rightarrow$ Lorentz force: $F_{L}=q(E+v \times B) . q:=$ charge, $E:=$ electric field, $v:=$ velocity.
- Case of most collider experiments: $E=0$, $B=\left(0,0, B_{z}\right)$:
$\Rightarrow F=q v B_{z}$
$\leftrightarrow \frac{m v^{2}}{R}=q v B_{z}$ (in circular motions)
$\leftrightarrow \frac{p}{q}=\frac{1}{k} B_{z}$.
With $R=\frac{1}{k}, k:=$ curvature.

Introduction: particles in a magnetic field

- Particle in field $B \rightarrow$ Lorentz force: $F_{L}=q(E+v \times B) . q:=$ charge, $E:=$ electric field, $v:=$ velocity.
- Case of most collider experiments: $E=0$, $B=\left(0,0, B_{z}\right)$:
$\Rightarrow F=q v B_{z}$
$\leftrightarrow \frac{m v^{2}}{R}=q v B_{z}$ (in circular motions)
$\leftrightarrow \frac{p}{q}=\frac{1}{k} B_{z}$.
With $R=\frac{1}{k}, k:=$ curvature.

Conclusion

One can deduce rigidity (momentum over charge) of particle with known magnetic field, and unknown curvature.

Introduction: Parametrization

Trajectory of a primary particle: helix parametrized by ($k, \eta, \phi_{0}, z_{0}, d_{0}$) with:

- Pseudorapidity $\eta=-\ln \left[\tan \left(\theta_{0} / 2\right)\right]$,

Introduction: Parametrization

Trajectory of a primary particle: helix parametrized by $\left(k, \eta, \phi_{0}, z_{0}, d_{0}\right)$ with:

- Pseudorapidity $\eta=-\ln \left[\tan \left(\theta_{0} / 2\right)\right]$,
- Azimuthal angle of the initial momentum vector ϕ_{0} (θ_{0} polar angle),

Introduction: Parametrization

Trajectory of a primary particle: helix parametrized by $\left(k, \eta, \phi_{0}, z_{0}, d_{0}\right)$ with:

- Pseudorapidity $\eta=-\ln \left[\tan \left(\theta_{0} / 2\right)\right]$,
- Azimuthal angle of the initial momentum vector ϕ_{0} (θ_{0} polar angle),
- Initial position on the z (beam) axis z_{o},

Introduction: Parametrization

Trajectory of a primary particle: helix parametrized by $\left(k, \eta, \phi_{0}, z_{0}, d_{0}\right)$ with:

- Pseudorapidity $\eta=-\ln \left[\tan \left(\theta_{0} / 2\right)\right]$,
- Azimuthal angle of the initial momentum vector ϕ_{0} (θ_{0} polar angle),
- Initial position on the z (beam) axis z_{0},
- Distance of closest approach $d_{0}=\sqrt{\mathrm{DCA}_{x}^{2}+\mathrm{DCA}_{y}^{2}}$ (often called $\mathrm{DCA}_{x y}$).

FITTING

The Karimaki fit

Finds circle curvature, direction and position parameters of a track with least square method. Assumptions are:

- Only spatial hit uncertainties (no multiple scattering, no inhomogeneous magnetic field),
- All hits are part of the track.

Least square method is the minimization of:

$$
\chi^{2}=\sum_{i} w_{i} \epsilon_{i}^{2}
$$

where $w_{i}:=$ weights and $\epsilon_{i}:=$ measurement residuals:

$$
\epsilon_{i}= \pm\left[\sqrt{\left(x_{i}-a\right)^{2}+\left(y_{i}-b\right)^{2}}-R\right]
$$

x_{i} and $y_{i}:=$ measured coordinates.

The Karimaki fit

Minimizing problem solved with approximation:

$$
\epsilon_{i} \approx \pm \frac{1}{2} R^{-1}\left[\left(x_{i}-a\right)^{2}+\left(y_{i}-b\right)^{2}-R^{2}\right]
$$

under the condition that $\left|\epsilon_{i} \ll R\right|$.

Ⓜany drawbacks: non-Gaussian...

Solution:

- Use curvature k instead of R (1 most important change!),
- Distance of closest approach d_{0} and direction of propagation Φ_{0},
- Used because not correlated and good straight track limit behavior (when $R \rightarrow \infty)$.
Equation becomes:

$$
\epsilon_{i}=\frac{1}{2} k r_{i}^{2}-\left(1+k d_{0}\right) r_{i} \sin \left(\Phi_{0}-\phi_{i}\right)+\frac{1}{2} k d_{0}^{2}+d_{0}
$$

with r_{i} and ϕ_{i} polar coordinates of i.

The Karimaki fit

Parameters are Gaussian and behave well at the straight track limit.
Rewrite now ϵ_{i} as:

$$
\epsilon_{i}=\left(1+k d_{0}\right) \eta_{i}
$$

with $\eta_{i}=k r_{i}^{2}-r_{i} \sin \left(\Phi_{0}-\phi_{i}\right)+\delta, \kappa=\frac{1}{2} \frac{k}{1+k d_{0}}$ and $\delta=\frac{1+\frac{1}{2} k d_{0}}{1+k d_{0}} d_{0}$.

$$
\begin{aligned}
\Rightarrow \chi^{2} & =\left(1+k d_{0}\right)^{2} \widehat{\chi^{2}}, \\
\widehat{\chi^{2}} & =\sum_{i} w_{i} \eta_{i}^{2} .
\end{aligned}
$$

In practice, minimizing $\widehat{\chi^{2}}$ with $k, d_{0}, \Phi_{0} \rightarrow$ minimizes the true χ^{2} !

Procedure:

1. minimize the $\widehat{\chi^{2}}$ with respect to κ, Φ_{0} and δ,

Result:
State vector $\left(k, d_{0}, \Phi_{0}\right)$.

The Karimaki fit

Parameters are Gaussian and behave well at the straight track limit.
Rewrite now ϵ_{i} as:

$$
\epsilon_{i}=\left(1+k d_{0}\right) \eta_{i}
$$

with $\eta_{i}=k r_{i}^{2}-r_{i} \sin \left(\Phi_{0}-\phi_{i}\right)+\delta, \kappa=\frac{1}{2} \frac{k}{1+k d_{0}}$ and $\delta=\frac{1+\frac{1}{2} k d_{0}}{1+k d_{0}} d_{0}$.

$$
\begin{aligned}
\Rightarrow \chi^{2} & =\left(1+k d_{0}\right)^{2} \widehat{\chi^{2}}, \\
\widehat{\chi^{2}} & =\sum_{i} w_{i} \eta_{i}^{2} .
\end{aligned}
$$

In practice, minimizing $\widehat{\chi^{2}}$ with $k, d_{0}, \Phi_{0} \rightarrow$ minimizes the true χ^{2} !

Procedure:

1. minimize the $\widehat{\chi^{2}}$ with respect to κ, Φ_{0} and δ,
2. solve the curvature and distance parameters k and d_{0} by inverting their expressions.
Result:
State vector $\left(k, d_{0}, \Phi_{0}\right)$.

The Karimaki fit: error estimation

Parameters are Gaussian distributed, error estimation done in respect to that. Error matrix V :

$$
\left(V^{-1}\right)_{j k}=\sum_{i} w_{i} \frac{\partial \epsilon_{i}}{\partial p_{j}} \frac{\partial \epsilon_{i}}{\partial p_{k}}
$$

with $p_{j, k}:=$ parameter.

- Corrections on error on the fitting of k, Φ_{0} and d_{0}, due to the minimization of $\widehat{\chi^{2}}$ and not χ^{2}, are added.
- Can be implemented simply and computed quickly.

The Karimaki fit: event reconstruction

In event reconstruction: fit first particle trajectories, then determine vertex from it \rightarrow iterative procedure.

Need:

- algorithm which
calculates parameters and errors
- according to a new vertex $\left(x_{0}^{\prime}, y_{0}^{\prime}\right)$.

The Karimaki fit: event reconstruction

In event reconstruction: fit first particle trajectories, then determine vertex from it \rightarrow iterative procedure.

Need:

- algorithm which calculates parameters and errors
- according to a new vertex $\left(x_{0}^{\prime}, y_{0}^{\prime}\right)$.

Solution \rightarrow transformation:

- $d_{0} \rightarrow d_{0}^{\prime}$,
- $\Phi_{0} \rightarrow \Phi_{0}^{\prime}$,
- k is invariant.

Φ_{0} is also transformed, not shown here since not on the same plane.

The Karimaki fit: event reconstruction

Mathematically (not very important for us):

$$
\begin{gathered}
\Phi_{0}^{\prime}=\arctan \frac{B}{C}, d_{0}^{\prime}=\frac{A}{1+U} \\
k \text { is invariant. } \\
A=2 \Delta_{\perp}+k\left(\Delta_{\perp}^{2}+\Delta_{\|}^{2}\right), \\
B=k\left(x_{0}-x_{0}^{\prime}\right)+\left(1+k d_{0}\right) \sin \Phi_{0}, \\
C=-k\left(y_{0}-y_{0}^{\prime}\right)+\left(1+k d_{0}\right) \cos \Phi_{0}, \\
U=\sqrt{1+k A}, \\
\Delta_{\perp}=\left(x_{0}-x_{0}^{\prime}\right) \sin \Phi_{0}-\left(y_{0}-y_{0}^{\prime}\right) \cos \Phi_{0}+d_{0}, \\
\Delta_{\|}=\left(x_{0}-x_{0}^{\prime}\right) \cos \Phi_{0}+\left(y_{0}-y_{0}^{\prime}\right) \sin \Phi_{0} .
\end{gathered}
$$

The new error matrix is then:

$$
V^{\prime}=J V J^{T}
$$

where J is simply the Jacobian derivative matrix.

The Karimaki fit: from circle fitting to helix fitting

- \triangle Karimaki: fits a circle, not a helix!
- To get a helix, need θ_{0} :

The Karimaki fit: from circle fitting to helix fitting

- \triangle Karimaki: fits a circle, not a helix!
- To get a helix, need θ_{0} :

$$
\tan \theta_{0}=\frac{\Delta s}{\Delta z}
$$

Conclusion

The Karimaki fit solves a nonlinear least squares problem with an elegant solution:

- Gaussian behaved fitted parameters,
- Computes value of the χ^{2} quickly (one of the quickest fits!),
- Calculates the covariance matrix of the fitted parameters.

Physical effects

Most dominant effect that will modify particle path:

- Multiple Coulomb scattering,
- Described roughly by a Gaussian distribution.

Standard deviation of the planar scattering angle (Highland equation):

$$
\theta_{\text {estimated }}:=\theta_{0}=\frac{13.6 \mathrm{MeV}}{\beta c p} Z \sqrt{L / X_{0}}\left[1+0.038 \ln \left(L / X_{0}\right)\right]
$$

Where $p:=$ momentum, $\beta c:=$ velocity, $Z:=$ charge in electron charge units and $L / X_{0}:=$ thickness of the scattering material in radiation length.

Hit uncertainties \rightarrow also affects proper track reconstruction.

- Drift chamber resolution: about $100 \mu \mathrm{~m}$
- Silicon detector resolution: about $10 \mu \mathrm{~m}$

The Kalman filter: case of no present magnetic field

The Kalman filter and the Karimaki fit: same basic principles, but Kalman filter has more advantages.
Random process noise w (e.g Coulomb scattering) is added to the transformation:

$$
x_{i}=F_{i-1} x_{i-1}+w_{i-1}
$$

$x_{i}:=$ state vector, $F_{i-1}:=$ transformation.
State vector not measured directly. Quantities m_{k} are measured by the detector k, related to the state vector with linear function h_{k} :

$$
m_{k}=h_{k}\left(x_{k}\right)+\epsilon_{k} .
$$

- ϵ_{k} is a measurement noise,
- Implementation of discrepancy between a measured and true value of the detector.
- \triangle This part extremely dependent on the experiment!

The Kalman filter: the three operation steps

1. Filtering: $x_{k}=x_{k}^{k-1}+K_{k} \cdot($ residual of prediction $)$,

- $K_{k}:=$ Kalman gain matrix.

Multiple Coulomb scattering angle

Operations also applied on the covariance matrix! Also update of $\chi 2$ after each iteration.

The Kalman filter：the three operation steps

1．Filtering：$x_{k}=x_{k}^{k-1}+K_{k} \cdot($ residual of prediction $)$ ，
－K_{k} ：＝Kalman gain matrix．
2．Prediction：$x_{k+1}^{k}=F_{k} x_{k}$ ．

Multiple Coulomb scattering angle

Operations also applied on the covariance matrix！Also update of $\chi 2$ after each iteration．

The Kalman filter：the three operation steps

1．Filtering：$x_{k}=x_{k}^{k-1}+K_{k} \cdot($ residual of prediction $)$ ，
－$K_{k}:=$ Kalman gain matrix．
2．Prediction：$x_{k+1}^{k}=F_{k} x_{k}$ ．
3．Smoothing：$x_{k}^{n}=x_{k}+A_{k} \cdot\left(x_{k+1}^{n}-x_{k+1}^{k}\right)$ ，
－$A_{k}:=$ Smoother gain matrix．

Multiple Coulomb scattering angle

Operations also applied on the covariance matrix！Also update of $\chi 2$ after each iteration．

The extended Kalman filter

In magnetic field, track propagator is nonlinear:

- Has to be approximated by a linear function,
- Done in the usual way by replacing it by first two terms of Taylor expansion.
$\rightarrow x_{k+1}^{k}=F_{k} x_{k}$ (extrapolation of state vector) becomes:

$$
x_{k+1}^{k}=f_{k}\left(x_{k}\right)
$$

Curved particle track

PATTERN RECOGNITION

Pattern recognition: seed finding

First step: Seed finding, in regions of low track density (outer detector regions).

Schematic view of the seeding algorithm.

Track seed: neighbor clusters roughly compatible with a track shaped as a helix pointing to the interaction.

Pattern recognition: track extension

Next step: track extension.

- When another layer is reached, a "tree" of possible extensions calculated, most probable candidate eventually selected with Kalman filter,
- When a cluster is associated with existing track, track parameters and covariance matrix are updated,
- Tracks usually refitted by the Kalman filter in the outward direction,
- Sometimes a final step of second inward propagation done.

Tree of possible extensions to a track.

Prolongation hypotheses are made, taking into account multiple scattering. The best track candidate (in blue) is chosen according to the quality of the whole track.

CONCLUSION

Conclusion: new tracking techniques

- Kalman filter: most used \rightarrow implementation of multiple scattering effects, measurement errors, (inhomogeneous) magnetic field.
- Has some drawbacks: very complicated implementation, iterative \rightarrow starts from the beginning when something wrong.
- New techniques available \rightarrow broken line fit:

Fast track fit (Karimaki)+detailed fit (reduction of residuals) allowing kinks.

Conclusion

- Particles in large collider experiments follow a helix.
- Fitting a circle or a helix is difficult (nonlinear problem) \rightarrow use new parametrization!
- Physical effects make track reconstruction even more difficult.
- Kalman filter takes physical effects into account and
- Predicts,
- Filters,
- Smooths the state vectors.
- A lot more of methods and techniques available: broken line fit, Hough transformations, multiple scattering fit, use of templates...

Bibliography

Alberto Caliva，Low－mass dielectron measurement in $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{S_{N N}}=2.76 \mathrm{TeV}$ with ALICE at the LHC．
苟
R．Frühwirth，Application of Kalman filtering to track and vertex finding， Institut für Hochenergiephysik der Österreichischen Akademie der Wissenschaften，Vienna，Austria， 1987.
䒠
V．Karimäki，Effective circle fitting for particle trajectories，SEFT， University of Helsinki，Helsinki，Finland， 1990.

围
Ferenc Siklér，Combination of various data analysis techniques for efficient track reconstruction in very high multiplicity events，Wigner RCP， Budapest，Hungary， 2017.

