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Introduction: particle tracks in collider experiments

Big European Bubble Chamber (CERN)

From this... to this!

In large collider experiments: particles leave hits on detector layers → huge
amount! Goal: proper linking of hits.
Big di�culties: high multiplicity of tracks, hit uncertainties, physical e�ects
(multiple Coulomb scattering, measurement errors...), hit ambiguities
(geometry of the detector...).
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Introduction: particles in a magnetic �eld

Ï Particle in �eld B → Lorentz
force: FL = q(E +v ×B). q :=
charge, E := electric �eld, v :=
velocity.

Ï Case of most collider
experiments: E = 0,
B = (0,0,Bz ):

⇒F = qvBz

↔ mv2

R
= qvBz (in circular motions)

↔ p

q
= 1
k
Bz .

With R = 1
k , k :=curvature.

Conclusion

One can deduce rigidity (momentum over charge) of particle with known
magnetic �eld, and unknown curvature.
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Introduction: Parametrization

Trajectory of a primary particle: helix parametrized by (k ,η,φ0,z0,d0) with:

Ï Pseudorapidity η=− ln [tan(θ0/2)],

Ï Azimuthal angle of the initial momentum vector φ0 (θ0 polar angle),

Ï Initial position on the z (beam) axis zo ,

Ï Distance of closest approach d0 =
√

DCA2x +DCA2y (often called DCAxy ).
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FITTING
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The Karimaki �t

Finds circle curvature, direction and position parameters of a track with least
square method. Assumptions are:

Ï Only spatial hit uncertainties (no multiple scattering, no inhomogeneous
magnetic �eld),

Ï All hits are part of the track.
Least square method is the minimization of:

χ2 =Σ
i
wi ε

2
i

where wi := weights and εi := measurement residuals:

εi =±
[√

(xi −a)2+ (yi −b)2−R

]
.

xi and yi := measured coordinates.
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The Karimaki �t

Minimizing problem solved with approximation:

εi ≈±1
2
R−1 [

(xi −a)2+ (yi −b)2−R2
]

under the condition that |εi ¿R |.

BMany drawbacks: non-Gaussian...

Solution:

Ï Use curvature k instead of R (Bmost important change!),
Ï Distance of closest approach d0 and direction of propagation Φ0,

Ï Used because not correlated and good straight track limit behavior (when
R →∞).

Equation becomes:

εi =
1
2
kr2i − (1+kd0)ri sin(Φ0−φi )+

1
2
kd20 +d0

with ri and φi polar coordinates of i .
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The Karimaki �t

Parameters are Gaussian and behave well at the straight track limit.

Rewrite now εi as:

εi = (1+kd0)ηi ,

with ηi = kr2
i
− ri sin(Φ0−φi )+δ, κ= 1

2
k

1+kd0 and δ= 1+ 1
2 kd0

1+kd0 d0.

⇒χ2 = (1+kd0)
2χ̂2 ,

χ̂2 =Σ
i
wiη

2
i .

In practice, minimizing χ̂2 with k ,d0,Φ0 → minimizes the true χ2 !

Procedure:

1. minimize the χ̂2 with respect to κ, Φ0 and δ,

2. solve the curvature and distance parameters k and d0 by inverting their
expressions.

Result:
State vector (k ,d0,Φ0).
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The Karimaki �t: error estimation

Parameters are Gaussian distributed, error estimation done in respect to that.
Error matrix V :

(V−1)jk =Σ
i
wi

∂εi
∂pj

∂εi
∂pk

,

with pj ,k := parameter.

Ï Corrections on error on the �tting of k, Φ0 and d0, due to the

minimization of χ̂2 and not χ2, are added.
Ï Can be implemented simply and computed quickly.
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The Karimaki �t: event reconstruction

In event reconstruction: �t �rst particle trajectories, then determine vertex
from it → iterative procedure.

Need:
Ï algorithm which
calculates parameters
and errors

Ï according to a new
vertex (x ′0,y ′0).

Solution → transformation:

Ï d0→ d ′
0,

Ï Φ0→Φ′
0,

Ï k is invariant.

Φ0 is also transformed, not shown here since not on the
same plane.
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The Karimaki �t: event reconstruction

Mathematically (not very important for us):

Φ′
0 = arctan

B

C
, d ′

0 = A

1+U

k is invariant.

A= 2∆⊥+k(∆2⊥+∆2∥ ) ,

B = k(x0−x ′0)+(1+kd0)sinΦ0 ,

C =−k(y0−y ′0)+(1+kd0)cosΦ0 ,

U =
p
1+kA ,

∆⊥ = (x0−x ′0)sinΦ0−(y0−y ′0)cosΦ0+d0 ,

∆∥ = (x0−x ′0)cosΦ0+(y0−y ′0)sinΦ0 .

The new error matrix is then:

V ′ = JVJT

where J is simply the Jacobian derivative matrix.
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The Karimaki �t: from circle �tting to helix �tting

Ï BKarimaki: �ts a circle, not a
helix!

Ï To get a helix, need θ0:

tanθ0 = ∆s
∆z

Conclusion

The Karimaki �t solves a nonlinear
least squares problem with an elegant
solution:

Ï Gaussian behaved �tted
parameters,

Ï Computes value of the χ2 quickly
(one of the quickest �ts!),

Ï Calculates the covariance matrix
of the �tted parameters.
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Physical e�ects

Most dominant e�ect that will modify particle path:
Ï Multiple Coulomb scattering,
Ï Described roughly by a Gaussian distribution.

Standard deviation of the planar scattering angle (Highland equation):

θestimated := θ0 = 13.6MeV
βcp

Z
√
L/X0 [1+0.038ln(L/X0)]

Where p := momentum, βc := velocity, Z := charge in electron charge units and
L/X0 := thickness of the scattering material in radiation length.

Hit uncertainties→ also a�ects proper track reconstruction.
Ï Drift chamber resolution: about 100µm
Ï Silicon detector resolution: about 10µm
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The Kalman �lter: case of no present magnetic �eld

The Kalman �lter and the Karimaki �t: same basic principles, but Kalman �lter
has more advantages.

Random process noise w (e.g Coulomb scattering) is added to the
transformation:

xi =Fi−1xi−1+wi−1 .

xi := state vector, Fi−1 := transformation.

State vector not measured directly. Quantities mk are measured by the
detector k, related to the state vector with linear function hk :

mk = hk (xk )+εk .

Ï εk is a measurement noise,
Ï Implementation of discrepancy between a measured and true value of the

detector.

Ï BThis part extremely dependent on the experiment!
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The Kalman �lter: the three operation steps

1. Filtering: xk = xk−1
k

+Kk · (residual of prediction),
Ï Kk := Kalman gain matrix.

2. Prediction: xk
k+1 =Fkxk .

3. Smoothing: xn
k
= xk +Ak · (xn

k+1−xk
k+1),

Ï Ak := Smoother gain matrix.

Operations also applied on the covariance matrix! Also update of χ2 after each
iteration.
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The extended Kalman �lter

In magnetic �eld, track propagator is nonlinear:
Ï Has to be approximated by a linear function,
Ï Done in the usual way by replacing it by �rst two terms of Taylor
expansion.

→ xk
k+1 =Fkxk (extrapolation of state vector) becomes:

xkk+1 = fk (xk )
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PATTERN RECOGNITION
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Pattern recognition: seed �nding

First step: Seed �nding, in regions of low track density (outer detector regions).

Schematic view of the seeding algorithm.

Track seed: neighbor clusters roughly
compatible with a track shaped as a helix
pointing to the interaction.
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Pattern recognition: track extension

Next step: track extension.
Ï When another layer is reached, a "tree" of possible extensions calculated,
most probable candidate eventually selected with Kalman �lter,

Ï When a cluster is associated with existing track, track parameters and
covariance matrix are updated,

Ï Tracks usually re�tted by the Kalman �lter in the outward direction,
Ï Sometimes a �nal step of second inward propagation done.

Tree of possible extensions to a track.

Prolongation hypotheses are made, taking into account multiple scattering. The best track
candidate (in blue) is chosen according to the quality of the whole track.
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CONCLUSION
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Conclusion: new tracking techniques

Ï Kalman �lter: most used→ implementation of multiple scattering e�ects,
measurement errors, (inhomogeneous) magnetic �eld.

Ï Has some drawbacks: very complicated implementation, iterative→ starts
from the beginning when something wrong.

Ï New techniques available→ broken line �t:

Fast track �t (Karimaki)+detailed �t (reduction of residuals) allowing kinks.
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Conclusion
What did we learn today?

Ï Particles in large collider experiments follow a helix.
Ï Fitting a circle or a helix is di�cult (nonlinear problem) → use new
parametrization!

Ï Physical e�ects make track reconstruction even more di�cult.
Ï Kalman �lter takes physical e�ects into account and

Ï Predicts,
Ï Filters,
Ï Smooths the state vectors.

Ï A lot more of methods and techniques available: broken line �t, Hough
transformations, multiple scattering �t, use of templates...
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