Sources and calibration of space point distortions in a TPC using the example of ALICE

Pascal Becht

Particle Tracking and Identification at High Rates Master Seminar, WS 2017/18 University of Heidelberg

January 19, 2018

Outline

Motivation

- 2 Static Distortions
 - Langevin Equation
 - RUN 1
- Oynamic Distortions
 - RUN 2
 - RUN 3 (expectations)

Conclusion

General Goals

- Track reconstruction
- Particle identification
 - Momentum *p*, *p*_T
 - Energy loss dE/dx
- \Rightarrow Best possible resolution

As a consequence:

- Distortion calibration better than intrinsic resolution
 - \mathscr{O} 1 mm (single space point)
 - ${\mathscr O}~200\,\mu m$ (tracklet)

Figure 1 Distorted (blue) and corrected (red) track [2]

$p_{\rm T}$ Resolution

Gluckstern formula (for high $p_{\rm T}$ tracks):

$$\left. \frac{dp_{\rm T}}{p_{\rm T}} \right|_{\rm res} = \frac{\sigma_{\rm point}}{eB_0 L^2} \sqrt{\frac{720}{N_{\rm eff} + 4}} \, p_{\rm T} \tag{1}$$

L: Projected length of the track on the bending plane $N_{\text{eff}} = N_{\text{point}}$: # equidistant, uncorrelated measurement points ALICE TPC: $N_{\text{point}} = 159$ No multiple scattering

BUT:

- Distorted space points are strongly correlated
- \Rightarrow Need a high(er) space point resolution for a given $p_{\rm T}$ resolution:

ALICE TPC:
$$\frac{\sigma_{\text{point}}}{\sqrt{N_{\text{point}/3}}} = \frac{0.1 \text{ cm}}{\sqrt{159/3}} \approx 150 \, \mu\text{m}$$

Pascal Becht

Space Point Correlation

Figure 2 Sketch of space point correlation due to space charge [3]

•
$$\rho_{\text{ion}} = \langle \rho \rangle + \sigma_{\rho}$$

• σ_{ρ} : $\mathscr{O} \pm 20 \%$

Figure 3 Modified mean trajectory (solid) with fluctuations (dashed)

Precision Requirements

- Correction for distortions down to intrinsic resolution
- \Rightarrow Precision criteria:

$$\sigma_{\rm dist} \le \frac{\sigma_{\rm cluster}}{\sqrt{N_{\rm corr}}}$$
 (2)

Example (line charge RUN2):

$$\sigma_{\text{cluster}} = 1 \text{ mm}$$

 $N_{\text{corr}} = \frac{N_{\text{point}}}{N_{\text{eff}}} = 20$
 $\Rightarrow \sigma_{\text{dist}} < 225 \,\mu\text{m}$

 \Rightarrow N_{corr} strongly depends on source of distortion

 $\sigma_{\textit{dist}}$

Pascal Becht

Motion of Charged Particles

Langevin equation (effective theory):

I

$$m\frac{d\vec{u}}{dt} = e\vec{E} + e\left(\vec{u}\times\vec{B}\right) - K\vec{u}$$
(3)

Static solution $\frac{d\vec{u}}{dt} = 0$:

$$\vec{u} = \frac{e}{m}\tau |\vec{E}| \frac{1}{1+\omega^2\tau^2} \left(\hat{\vec{E}} + \omega\tau \left(\hat{\vec{E}} \times \hat{\vec{B}}\right) + \omega^2\tau^2 \left(\hat{\vec{E}} \cdot \hat{\vec{B}}\right) \cdot \hat{\vec{B}}\right)$$
(4)

K: friction parameter $\tau = m/K$ $\omega = qB/m$ $\omega \tau$: detector specific

ALICE TPC:

$$\omega \tau = 0.3 \text{ for } e^{-}$$

$$\omega \tau \approx 0 \text{ for ions}$$

$$\Rightarrow \text{ Ideal case: } \hat{\vec{E}} \parallel \hat{\vec{B}}, \ \hat{\vec{E}} \perp \hat{\vec{S}}$$

$$(\hat{\vec{E}} \times \hat{\vec{B}} = 0)$$

RUN1

2005 - 2013

Interaction rate: *O* 100 Hz (Pb-Pb) MWPC readout

RUN 1

Field Cage

Figure 5 Sketch of the ALICE TPC field cage by D. Vranic [4]

next slides

Static Distortions and their Calibration

- E field inhomogenities at the boundary
- Mechanical misalignment of the CE
- Field cage misalignment
- B field inhomogenities
- $E \times B$ twist
- Calibration

RUN 1

E Field Inhomogenities at the Boundary

Figure 6 Sketch of the working principle of the field cage by D. Vranic. Remaining inhomogenity depth $\frac{E_r}{E_z} \sim e^{-\frac{d}{\Delta}}$. $\Delta = 270 \text{ mm}$ [4]

RUN 1

Mechanical Misalignment

- Mechanical misalignment $\hat{=}$
 - E field distortions
- \mathcal{O} 1 mm misalignment
 - $\rightarrow \mathcal{O}$ 1 mm distortion:

Resulting $dr\phi$ [6] Figure 8

Field Cage and Rod Misalignment

Figure 10 Resulting $r\phi$ distortions [6]

atic Distortions RU

Shifted Rod and Strips

Figure 11 Shifted rod and strips scenario [6]

- 20° gap between rods
- $\Rightarrow \frac{\Delta_{\mathrm{rod}}}{d_{\mathrm{rod}}} \cdot L_{\mathrm{drift}} \approx 8.3 \Delta_{\mathrm{rod}}$
 - $\Delta_{rod} \mathcal{O}$ 100 µm \rightarrow \mathcal{O} 1 mm distortions

Pascal Becht

TPC space point distortions

B Field Inhomogenities

- Axis of the magnet slightly shifted from centre
- ⇒ Causing B field inhomogenities in active volume

•
$$B_{\rm r} \neq 0$$

•
$$\frac{B_{\rm r}}{B_{\rm z}} \sim r$$

- $\frac{B_{\rm r}}{B_{\rm z}} \approx 1\%, \ \omega \tau = 0.3$ at $r^* = 120 - 150 \, {\rm cm}$
- $1\% \cdot 0.3 \cdot 250 \text{ cm} \approx$ $\mathscr{O} 0.75 \text{ cm}$

TPCExBShape

Pascal Becht

TPC space point distortions

$E \times B$ Twist

Pascal Becht

TPC space point distortions

January 19, 2018 16 / 57

RUN 1

Calibration (RUN1)

Figure 16 Composed correction maps for RUN1 based on physical models [6]

Assumptions:

Distortions commute

•
$$\Delta = \sum_i k_i E_i$$

Distortions stable in time

BUT:

- Not directly observable
- \Rightarrow Set of unbiased observables O
- detector matching
- invariant masses
- cosmics

• $\sum_{i} k_i O_{E_i}$

Pascal Becht

RUN2

2015 - 2018

Interaction rate: *O* 10 kHz (Pb-Pb) MWPC readout

Observations for RUN2

- First high luminosity data of RUN2
- Large distortions up to ± 2.5 cm
- Distortion well localised at sector boundaries

Figure 17 $dr\phi$ distortion hot spots at IROC boundaries [7]

Pascal Becht

Expectations for Ar-CO2 (RUN2)

Figure 18 Expected drift field distortions for RUN2. dr (left), $dr\phi$ (right). Distortions smaller 1mm in most parts of the volume [2]

Highest track density in the middle for small radii:dr up to 5 mm $dr\phi$ up to 2 mm

Space Charge Generation

Figure 19 Sketch of space charge generation. $\mu_{\rm ion}/\mu_{\rm e} \approx 1000$ [3]

Sources:

- Backflow from gas amplification in ROCs
- Primary ionisation

 \Rightarrow RUN2: Higher space charge accumulation \rightarrow higher distortions

• Mobility
$$\mu = \frac{v_{\text{drift}}}{E}$$

- $\mu_{\rm NeCO2N2}/\mu_{\rm ArCO2} \approx 2$
- Prim. ionisation: RUN1 RUN2 $13 \, \text{cm}^{-1}$ $26 \, \mathrm{cm}^{-1}$
- Higher luminosity in RUN2

 $\frac{\mathrm{flux}}{\mu} \cdot \frac{dE}{dx} \cdot T_{\mathrm{source}} \sim \rho_{\mathrm{ion}} \sim \Delta$

Measurement of Distortions (RUN2)

Figure 20 Sketch of distortion measurement in RUN2 via reference detectors ITS, TRD (now operational), TOF [2] Distortion vector:

$$(dr, dr\phi, dz)$$

 $\delta Y = dr\phi + dr \cdot \tan(\phi)$ ϕ : local inclination
 $\delta Z = dz + dr \cdot \tan(\lambda)$ λ : dip angle

Observations for RUN2

Figure 21 $dr\phi$ distortion hot spots at IROC boundaries [7]

- First high luminosity data of RUN2
- Large distortions up to ± 2.5 cm
- Distortion well localised at sector boundaries

 \Rightarrow Source?

Dependence on the Drift Length

Figure 22 Drift length dependance of the distortions [7]

Linear dependence discovered \Rightarrow Columns of positive charge drifting from ROCs to CE

Origin of Space Charge

Figure 23 *E* field simulation at sector boundary by M. Ivanov [2]

Figure 24 Cover voltage dependence of the distortions [7]

 \Rightarrow First indication that distortion originates between sectors

Pascal Becht

TPC space point distortions

Inside or Outside Gap?

Figure 25 Occupancy studies to determine location of space charge source [7]

- Increase of occupancy close to distortion hotspots
- \Rightarrow Measure derivative of distortion with sub-pad granularity
- \Rightarrow Centre clearly inside the sector gap

Analitical Fit Model I

 E field of infinite line charge with uniform density λ

•
$$E(\Delta_r) = \frac{\lambda}{2\pi\epsilon_0\Delta_r}$$

Figure 26 Scheme of Gauss' Law for infinite line charge [7]

$$E(r, r\phi) = \sum_{i=0}^{N} \frac{\lambda_i}{\sqrt{(r-R_i)^2 + (r\phi - R\Phi_i)^2}}$$
(5)

Analitical Fit Model II

$$E_r(r, r\phi) = \sum_{i=0}^{N} \frac{(r - R_i)\lambda_i}{(r - R_i)^2 + (r\phi - R\Phi_i)^2 + \Delta O_i^2}$$
(6)

$$E_{r\phi}(r, r\phi) = \sum_{i=0}^{N} \frac{(r\phi - R\Phi_i)\lambda_i}{(r - R_i)^2 + (r\phi - R\Phi_i)^2 + \Delta O_i^2}$$
(7)

$$dr = \frac{L_{\text{drift}}}{E_z} (E_r - \omega \tau E_{r\phi})$$
(8)

$$dr\phi = \frac{L_{\rm drift}}{E_z} (E_{r\phi} - \omega \tau E_r)$$
(9)

 ΔO : finite radius size parameter (0.1 cm) L_{drift} : drift length

Pascal Becht

Individual Fit Sector 9

Figure 27 Line charge fit results for ΔR (top) and $\Delta R\Phi$ (bottom); sector 9. Data (left), Fit (middle), Data - Fit (right) [7]

Pascal Becht

TPC space point distortions

Individual Fit Sector 6

Figure 28 Line charge fit results for ΔR (top) and $\Delta R\Phi$ (bottom); sector 6. Data (left), Fit (middle), Data - Fit (right) [7]

Pascal Becht

TPC space point distortions

RUN 2

Fits of Distortion Location

Figure 29 Results of position fitting of space charge in $r\phi$ for different sectors over 1 month Pb-Pb data. $0 \text{ cm} \stackrel{\circ}{=} \text{gap} [7]$

Pascal Becht

RUN3

starting 2021

Interaction rate: Ø 50 kHz (Pb-Pb)
GEM readout

GEM TPC Upgrade

Figure 30 Schematic of the TPC upgrade. MWPC are replaced by GEM stacks. $\epsilon \approx 0 \rightarrow \epsilon = 20$ [2]

• Large ion backflow (IBF) expected

$$\epsilon = 20 \frac{\mathrm{ions}}{\mathrm{prim.} \ e^{-}}$$

•
$$\rho_{\rm sc} = N_{\rm ion}(1+\epsilon)$$

Figure 31 Simulation of ion backflow in a GEM [2]

Expected Distortions in RUN3

Figure 32 Expected distortions in *r*- and $r\phi$ -direction [8]

Pb-Pb, 50 kHz, $\epsilon = 20$ (pp factor 5 less) :

- *dr* up to ≈ 20 cm
- $dr\phi$ up to ≈ 8 cm

\Rightarrow Final calibration to $\mathcal{O}10^{-3}$ (200 - 500 μ m)

Space Charge Map (RUN3)

Ne-CO₂-N₂ (90-10-5): 50 kHz, ε = 20

Figure 33 Fitted average space charge density for RUN3. Step due to background from muon absorber at C-side [9]

- Parametrised charged particle density distributions
- Plus symmetry assumptions

$$\Rightarrow \rho_{\rm sc}(r,z) = \frac{a-bz+c\epsilon}{r^d}$$

• 1.5 < d < 2

Distortion Calculation

Figure 34 Basic principles of calculating the space point distortions [10]

Space Charge Density Maps

Figure 35 Space charge density maps for different pileup scenarios. 8000 (top), 160 000 (bottom). [9]

 $\Rightarrow t_{\text{drift}} \approx 160 \, \text{ms} \rightarrow \text{pileup of } 8000 \, \text{events}$

Pascal Becht

Distortion Maps

Figure 36 Projection of $r\phi$ distortion maps close to CE ($z \approx 10$ cm) from 3D space charge map normalised to $\epsilon = 5$. B = 0 T (left) and B = 0.5 T (right) causing $E \times B$ effects [9]

Contributions to Space Charge Fluctuation

Pb-Pb, 50 kHz, $\epsilon = 20$:

- *dr* up to ≈ 20 cm
- $dr\phi$ up to \approx 8 cm

Figure 37 Different contributions to space charge fluctuation [8]

- Space charge fluctuations $\approx 3\%$
- Dominated by event and multiplicity fluctuations
- Knowing ρ_{av} :
 - Max. $\pm 6 \text{ mm}$ residual dist. in *r*
 - Max. \pm 2.5 mm residual dist. in $r\phi$
- $\Rightarrow \text{ Sets constraints on} \\ \text{update interval of } \rho_{\text{av}}$

Pascal Becht

Fluctuation Impact

Figure 38 Estimate for update interval by shifting the SC map in *z*-direction [8]

- Already shift by 16 cm²10 ms is significant
- $\Rightarrow \text{ Required update} \\ \text{time:} \approx 5 \text{ ms}$
 - Instead: Δ_{ref} correction + residuals
 - (pad current
 - measurement)

 $\vec{\Delta}$

Conclusion/Outlook

- Static distortions well understood
- Observations made during RUN2 well described by analytical model of line charges
- For RUN3 still some work to do, but on a good way

Backup

Dependence on Interaction Rate (RUN2)

Figure 39 Saturation of distortion towards high interaction rate [2]

 \Rightarrow Primary e^- are deflected such, that they wont reach regions where they cannot create further space charge

Flux Dependance of Distortions

Figure 40 Exponential dependance of distortions from flux. 2017, pp, Ne-CO2-N2 (blue), 2013, pPb, Ne-CO2 [3]

Occupancy Approach

Figure 41 Cluster occupancy ratio with closed gating grid (GG) of different sectors [7]

- GG is 100% transparent \rightarrow Occ. ratio \mathscr{O} 200
- \Rightarrow No increased occupancy at gaps observed

Backup

CE Approach

Figure 42 Laser scan of Central Electrode (CE) [7]

- Isotropic laser ligt to liberate e^- from CE
- Ions depositted on CE decrease its work function
- ⇒ Centre of gravity at sector boundaries

Individual Fit Sector 9

Figure 43 Results for sector 9. Lines are simulation results, no fit [7]

Backup

Position Fits for *R*-position

Figure 44*R*-position fits. Segment 29 shows different behaviour[7]

Pascal Becht

Luminosity Dependence of Space Chage Density

Figure 45 Linear dependence of space charge from luminosity for different B field orentation and sectors [2]

Pascal Becht

TPC space point distortions

Backup

Expected Z Distortions in RUN3

Figure 46 Expected distortions for RUN3 in *z*-direction [9]

Radial Dependence of Distortions

Figure 47 Radial Dependence of *dr* (left) and *dr* ϕ (right) near the central electrode ($z \approx 0$ cm) for $\epsilon = 20$ (solid) and $\epsilon = 10$ (dashed) [9]

ϵ Dependence of Distortions

Figure 48 ϵ dependence of *dr* (left) and *dr* ϕ (right) near the CE ($z \approx 10$ cm) and in the middle of a ROC (y = 0). Dashed line indicates linear dependance (eye guide) [9]

Distortion Fluctuation Model

$$\frac{\rho_{\rm sc}}{\mu_{\rm sc}} = \frac{1}{\sqrt{N_{\rm pileup}^{\rm ion}}} \sqrt{1 + \left(\frac{\sigma_{\rm N_{\rm mult}}}{\mu_{\rm N_{\rm mult}}}\right)^2 + \frac{1}{F\mu_{\rm N_{\rm mult}}} \left(1 + \left(\frac{\sigma_{\rm Q_{\rm track}}}{\mu_{\rm Q_{\rm track}}}\right)^2\right)} \quad (10)$$

$$\frac{1}{\sqrt{N_{\text{pileup}}^{\text{ion}}}} \approx 1.1\% \text{ fluctuation of number of pileup events}$$

$$\frac{\sigma_{\text{N}_{\text{mult}}}}{\mu_{\text{N}_{\text{mult}}}} \approx 1.4\% \text{ RMS of multiplicity distribution}$$

$$\frac{\sigma_{\text{Q}_{\text{track}}}}{\mu_{\text{Q}_{\text{track}}}} \approx 1.7\% \text{ relative variation of ionisation of single track}$$

F: geometrical factor decribing relevant regions for space chage

References I

Marian Ivanov.

Personal communication.

Ernst Hellbär.

Raumladungsverzerrungen in der ALICE TPC.

IKF Seminar, 14. Dezember 2017.

Marian Ivanov.

TPC and TRD flux and space charge distortion. Distortion model. ALICE TPC weekly meeting, 29th November 2017.

Yannik Vetter.

Space-Point Distortions.

Seminar Report, Universität Heidelberg, 16th December 2016.

References II

J. Thomas M. Mager, S. Rossegger.

Composed correction framework for modeling the TPC field distortions in AliRoot.

ALICE Internal Note: ALICE-INT-2010-018 version 1.0, 2010.

Marian Ivanov.

TPC space point distortion and calibration. Pass 0 and PassX calibration. ALICE offline week, 10th March 2011.

Marian Ivanov.

Locating the origin of space charge distortions. Analytical models. ALICE Technical Board Meeting, 6th April 2017.

References III

Jens Wiechula.

TPC run 3 O2 discussion.

TPC micro workshop on Continuous readout (simulations), 8th October 2014.

The ALICE collaboration.

Upgrade of the ALICE Time Projection Chamber.

Technical Report CERN-LHCC-2013-020. ALICE-TDR-016, Oct 2013.

J. Thomas S. Rossegger.

Space-charge effects in the ALICE TPC: a comparison between expected ALICE performance and current results from the STAR TPC. ALICE Internal Note: ALICE-INT-2010-017 version 1.0, 2010.

References IV

Ernst Hellbär.

Ion Movement and Space-Charge Distortions in the ALICE TPC.

mathesis, Institut für Kernphysik Goethe-Universität, Frankfurt am Main, 2015.

Ernst Hellbär.

Space-charge distortions in der ALICE TPC.

Presentation Slides.

Marian Ivanov.

Where do we stand with respect to TDR performance.

TPC planning meeting, 2nd February 2011.