Gas detectors and intrinsic space-point resolution

DANIEL BAITINGER

PARTICLE TRACKING AND IDENTIFICATION AT HIGH RATES WS2017/18, HEIDELBERG

Gas Detectors - Motivation

- •Large area coverage
- •Coordinate measurement
- •Time-of-flight
- •Charge collection $\rightarrow dE/dx$
- •TPC: 3D reconstruction in high multiplicity events (~20,000 tracks)

Gas Detectors - Principle

- •Enclosed gas volume
- Applied electrical field
- •Traversing charged particle ionizes gas
- •Electrons and ions drift to electrodes
- •Measure position, time and/or collected charge

Agenda

- 1. Gas Detectors and ALICE TPC
- 2. Ionization
- 3. Drift and diffusion
- 4. Signal creation and gas gain variation
- 5. Space point resolution
- 6. Momentum measurement

Gas Detectors – Examples (MWPC)

•Multi-Wire Proportional Counter

- Anode wires + cathode strips
- Measure 2D position
- $\sigma_{wire} \sim 570 \ \mu m$ for d = 2mm
- $\circ \sigma_{strip} \sim 50 300 \,\mu m$

Gas Detectors – Examples (straw tubes)

- •Straw tubes (e.g. LHCb outer tracker)
 - Stack of small single wire gas tubes
 - Measure 2D position
 - $\,\circ\,$ Stack \rightarrow track reconstruction
 - *σ*~200 μm

Gas Detectors – Examples (TOF)

- •Time-Of-Flight (e.g. ALICE TOF)
 - Multigap Resistive Plate Chamber
 - Electron avalanche in each gap
 - Induce fast signal on pickup electrodes
 - $\sigma \sim 50 \text{ ps}$

ALICE Time Projection Chamber (TPC)

TPC

•Very high multiplicity (~20,000 tracks)

lonization

•Primary ionization: $X + p \rightarrow X^+ + p + e^-$

•Secondary ionization: $X + e^- \rightarrow X^+ + e^- + e^-$

•Mean energy loss:

A: Atomic mass of medium

 $\beta = v/c$ of incident particle

DANIEL BAITINGER

Ionization II

Primary Ionization

•# e^- per cm: $\langle N_P \rangle = 1/\lambda \approx 15/cm$ (Ne–CO₂ [90-10]) • λ : mean free path

•Number of primary e^- Poisson distributed

Secondary Ionization

•High energy $e^- \rightarrow$ further ionization

•Secondary ionization near primary ionization

 \Rightarrow Cluster formation

• $N_{tot} \approx 3 - 4 N_p$

Cluster size distribution in Argon

DANIEL BAITINGER

Space point resolution

Main contributions:

- •Diffusion σ^2_{drift}
- •Detection σ_{pad}^2
- •Angular pad effect σ_{ang}^2
- •ExB effects $\sigma_{ExB}^2 \rightarrow \text{talk by Pascal Becht}$

$$\bullet \sigma_{total}^2 = \sigma_{pad}^2 + \sigma_{drift}^2 + \sigma_{ang}^2 + \sigma_{ExB}^2$$

Drift (macroscopic)

•Eq. of motion (Langevin):

$$m\frac{d\mathbf{u}}{dt} = e\mathbf{E} + e[\mathbf{u} \times \mathbf{B}] - K\mathbf{u}$$

•*K*: friction from microscopic collisions, $\tau = m/K$ characteristic time between two collisions

•Stationary eq.
$$\xrightarrow{\frac{du}{dt}=0} \frac{\mathbf{u}}{\tau} - \frac{e}{m} [\mathbf{u} \times \mathbf{B}] = \frac{e}{m} \mathbf{E}$$

• $B = 0$: $u = \frac{e}{m} E \tau \approx 2 - 3 \frac{cm}{\mu s}$ for ALICE TPC with Argon or Neon
•With B-Field: helix motion with cyclotron frequency $\omega = \frac{eB}{m}$

DANIEL BAITINGER

Drift (microscopic)

•Light e^- scatter isotropically ("friction")

•Gaussian spread
$$n = \frac{1}{(4\pi Dt)^3} \exp(-\frac{r^2}{4Dt})$$

 \Rightarrow Diffusion

•lons ~ 1000 times slower, non-isotropic

Electric anisotropy

•Statistical diffusion superimposed with ordered drift along field

 \Rightarrow Different mobilities μ at center/edges reduces longitudinal diffusion

•High E-field \rightarrow small longitudinal diffusion

Magnetic anisotropy

•Magnetic field \rightarrow Lorentz force in transversal direction

 \Rightarrow Reduced transversal diffusion

$$\frac{D_T(\omega)}{D_T(0)} = \frac{1}{1+\omega^2\tau^2}$$

•High B-field wanted

		$\omega \tau$	B
Ne- CO2 (90-10)	ALICE TPC Run 1	0.34	0.5 T
Ne-Co2-N2 (85-10-5)	ALICE TPC Run 1/3	0.32	0.5 T
Ar-Co2 (90-20)	Run2	0.43	0.5 T
Ar-CH4(90-10)	STAR TPC	2.3	0.5 T
Ar-CH4(90-10)	ALEPH TPC	7	1.5 T

Diffusion for different gas mixtures

• ALICE TPC: $D_{T/L} \approx 220 \ \mu m / \sqrt{cm}$

12.01.2018

DANIEL BAITINGER

Signal creation

- •~40 e^{-}/cm for Ne-CO₂ (90-10)
- •Electric noise $\sim 1000 \ e^-$
- ⇒Signal amplification
- •Current ALICE TPC: Multi Wire Proportional Chamber (MWPC) with gating grid
- •Run 3: Gas Electron Multiplier (GEM) stack

Signal creation: ALICE MWPC

•Grid of wires with applied voltage \rightarrow High E-field close to wires

- • e^- accelerated \rightarrow electron avalanche (Gas gain $\sim 6 10 \cdot 10^3$)
- •Gating grid to handle ion backflow (IBF) with max. readout rate \sim 8 kHz

Ions induce signal on readout plane

Signal creation: GEM

•LHC Run 3: Pb-Pb collision rates up to 50 kHz \rightarrow Gating grid too slow

•GEM continuous readout and intrinsic IBF suppression

- •Ion trapping and electron transparency depends on asymmetry
- •Ideally: suppress all ion backflow, however...

GEM ion backflow reduction

- Reducing ion backflow reduces electron transparency
 - worsens energy resolution
- •Compromise between energy resolution and ion backflow

•
$$\sigma_E \left(\mathrm{Fe}^{55} \right) < 12\%$$
, $IBF < 1\%$

Stack of 4 GEMs

Pad response

https://web.physik.rwth-aachen.de/~tpcmgr/downloads/talks/ICATPP-como03-roth.pdf

Gas Gain Fluctuation

- •Gain fluctuations impact coordinate measurement
- •Every e^- of cluster amplified independently
- •gain $G \sim \exp(-\alpha n) \rightarrow$ exponential fluctuations
- •Shifts center of gravity \rightarrow weigh coordinate with gain

No gas gain fluctuations

With gas gain fluctuations

ALICE coordinate system

Global coordinate system

Local coordinate system

DANIEL BAITINGER

Angular pad effect

•x-position fixed at middle of pad row

•y-position random variable with uniform width

 $L_{ang} = L_{pad} \cdot \tan \beta$ $\sigma_{ang}^2 = \frac{tan^2(\beta)L_{pad}^2G_{Lfactor}(N_{prim})}{12N_{prim}}$

Other effects

• ExB effects, space charge \rightarrow talk by Pascal Becht

•Electron attachment

•Gas impurities

•Wire vibrations

Resolution of MWCP vs GEM readout

- Gem slightly worse resolution
- Narrow pad response of GEM \rightarrow worse space point resolution near readout

Momentum resolution

•Track curvature influenced by space point resolution

•Uncertainty:

$$\left|\frac{dp_T}{p_T}\right|_{tot} = \left|\frac{dp_T}{p_T}\right|_{res} + \left|\frac{dp_T}{p_T}\right|_{MS} + \left|\frac{dp_T}{p_T}\right|_B$$

•N equidistant measurements: Gluckstern formula

$$\left|\frac{dp_T}{p_T}\right|_{res} = \frac{\sigma_{point}}{eB_0L^2}\sqrt{\frac{720}{N+4}}p_T$$

L: projected length of track onto bending plane

ALICE Collaboration: Performance of the ALICE Experiment at the CERN LHC, arXiv:1402.4476

DANIEL BAITINGER

Correlation of space points

•Space points can be correlated

•Example: point-like space charge \rightarrow several electrons attracted to/repulsed by same point

•Group space points according to correlation length

•Reduces effective space points, but takes correlation into account

 $\bullet N_{eff} \sim N_{all}/N_{corr} = 159/20 \approx 8$

⇒Need higher space point resolution for given track resolution than naively expected

Distortion due space charge p₃ - scale parameter 3.7 cm

Summary

•TPC's especially well suited for high multiplicity environments

- •Full track reconstruction
- •Large coverage
- •Relatively slow → New continuous readouts needed, large research effort
- •Resolutions dependent on field strengths, pad sizes and gas mixture

Sources

•Marian Ivanov

- •Particle detectors lectures by Silvia Masciocchi (SS 2017, Heidelberg)
- •Particle Detection with Drift Chambers, W. Blum and L. Rolandi, Springer-Verlag, 1994
- •The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events, ALICE Collaboration, 2010
- •*Technical Design Report for the Upgrade of the ALICE Time Projection Chamber*, ALICE Collaboration, 2014
- •*TPC tracking and particle identification in high-density environments,* Y.Belikov, M.Ivanov, K. Safarik, 2003
- •Jens Wiechula: TPC lectures

GEM stack

Primary Ionization

Secondary Ionization

•High energy $e^- \rightarrow$ further ionization

- •Secondary clusters near primary ionization
- \Rightarrow Cluster formation

• $N_{tot} \approx 3 - 4 N_p$

Range e	naries? for Argon
Energy	Range
1 keV	30 µm
10 keV	1.5 <i>mm</i>
30 keV	1 <i>cm</i>
60 keV	3 <i>cm</i>

Cluster size distribution in Argon