Quark-Gluon Plasma Physics 7. Space-time evolution of the QGP

Prof. Dr. Peter Braun-Munzinger Dr. Alexander Schmah Heidelberg University SS 2021

Evidence for collective behavior in heavy-ion collisions

- Shape of low-p_T transverse momentum spectra for particles with different masses
- Azimuthal anisotropy of produced particles
- Source sizes from Hanbury Brown-Twiss correlations

QGP physics SS2021 | P. Braun-Munzinger, A. Schmah | 7. Space-time evolution of the QGP 2

. . .

Evidence for radial flow

Ratio of particle spectra

 $p = \beta \gamma m$

Centrality dependence of radial flow: effect increases with more central events

Baryon to Meson Ratios

Ratio is almost flat for p/ϕ (similar mass)

Evidence for elliptic flow

Basics of relativistic hydrodynamics

Standard thermodynamics: P, T, μ constant over the entire volume

Hydrodynamics assumes *local* thermodynamic equilibrium: $P(x^{\mu})$, $T(x^{\mu})$, $\mu(x^{\mu})$

Local thermodynamic equilibrium only possible if mean free path between two collisions much shorter than all characteristic scales of the system:

 $\lambda_{\rm mfp} \ll L$

This is the limit of non-viscous hydrodynamics.

4-velocity of a fluid element:

$$u = \gamma(1, \vec{eta}), \quad u^{\mu}u_{\mu} = 1$$

 $\gamma = rac{1}{\sqrt{1 - ec{eta}^2}}$

Number conservation

Mass conservation in nonrelativistic hydrodynamics:

 $\frac{\partial \rho}{\partial t} + \vec{\nabla}(\rho \vec{v}) = 0 \qquad \text{[continuity equation]}$

Lorentz contraction in the relativistic case: ho

conserved quantity, / e.g. baryon number $n\gamma = nu^0$

The continuity equation then reads:

$$\frac{\partial (nu^0)}{\partial t} + \vec{\nabla} (n\vec{u}) = 0 \qquad \frac{nu^0}{n\vec{u}} : \text{ baryon density}$$

The conservation of *n* can be written more elegantly as

$$\partial_\mu(nu^\mu)=0$$

For a general 4-vector a we have:

$$\partial_{\mu} \equiv \frac{\partial}{\partial x^{\mu}} = \left(\frac{\partial}{\partial t}, \vec{\nabla}\right), \quad \partial^{\mu} \equiv \frac{\partial}{\partial x_{\mu}} = \left(\frac{\partial}{\partial t}, -\vec{\nabla}\right), \qquad \partial_{\mu} a^{\mu} = \left(\frac{\partial}{\partial t}, \vec{\nabla}\right) \cdot \left(a^{0}, \vec{a}\right) = \frac{\partial a^{0}}{\partial t} + \vec{\nabla}\vec{a}$$
covariant derivative contravariant derivative

Transverse expansion

Transverse expansion of the fireball in a hydro model (temperature profile)

2+1 d hydro: Bjorken flow in longitudinal direction

Temperature Contours and Flow lines

Viscosity

Pitch drop experiment, started in Queensland, Australia in 1927

Date	Event	Duration		
		Years	Months	
1927	Hot pitch poured		-	
October 1930	Stem cut			
December 1938	1st drop fell	8.1	98	
February 1947	2nd drop fell	8.2	99	
April 1954	3rd drop fell	7.2	86	
May 1962	4th drop fell	8.1	97	
August 1970	5th drop fell	8.3	99	
April 1979	6th drop fell	8.7	104	
July 1988	7th drop fell	9.2	111	
November 2000	8th drop fell ^[A]	12.3	148	
April 2014	9th drop ^[B]	13.4	156	

Meaningful comparison of different fluids: η/s

https://en.wikipedia.org/wiki/Pitch_drop_experiment

Shear and bulk viscosity

Shear viscosity

Acts against buildup of flow anisotropies (v2, v3, v4, v5, ...)

 η/s : shear viscosity per entropy density ratio

Bulk viscosity

Acts against buildup of radial flow

Universal aspects of the underlying physics

Strongly-interacting	degenerate gas of fermion	ic
⁶ Li atoms at 0.1 μK		

- Cigar-shaped cloud initially trapped by a laser field
- Anisotropic expansion upon abruptly turning off the trap: Elliptic flow!

η/s can be extracted: [PhD thesis Chenglin Cao]

$$(\eta/s)_{^{6} ext{Ligas}}pprox 0.4 = 5 imesrac{1}{4\pi}$$

The ultimate goal is to unveil the universal physical laws governing seemingly different physical systems (with temperature scales differing by 19 order of magnitude)

2000 µs

1500 µs

100 µs

200 µs

400 µs

600 µs

800 µs

1000 µs

John Thomas, https://www.physics.ncsu.edu/jet/research/stronginter/index.html

Hydrodynamic modeling of heavy-ion collisions: State of the art

- Equation of state from lattice QCD
- (2+1)D or (3+1)D viscous hydrodynamics
- Fluctuating initial conditions (event-by-event hydro)
- Hydrodynamic evolution followed by hadronic cascade

The blast-wave model: A Simple model to describe the effect of radial flow on particle spectra

Transverse velocity profile:

$$\beta_T(r) = \beta_s \left(\frac{r}{R}\right)^n$$

Superposition of thermal sources with different radial velocities:

$$\frac{1}{m_{T}} \frac{dn}{dm_{T}} \propto \int_{0}^{R} r \, dr \, m_{T} \, l_{0} \left(\frac{p_{T} \sinh \rho}{T} \right) \, \mathcal{K}_{1} \left(\frac{m_{T} \cosh \rho}{T} \right)$$

$$\rho := \operatorname{arctanh}(\beta_{T}) \quad \text{``transverse rapidity''}$$

$$l_{0}, \, \mathcal{K}_{1} : \text{ modified Bessel functions}$$
Schnedermann, Sollfrank, Heinz,
Phys.Rev.C48:2462-2475,1993
K. Reygers, A. Schmah, A. Berdnikova, X. Sun
10.1103/PhysRevC.101.064905

Freeze-out at a 3d hyper-surface, typically instantaneous, e.g.:

K. Reygers,

10.1103/PhysRevC.1

$$t_{\rm f}(r,z)=\sqrt{\tau_f^2+z^2}$$

Comparison of π , K, p spectra with hydro and blastwave models

Example: Radial Flow Velocity Profile from Blast-wave Fit to 2.76 TeV Pb-Pb Spectra (0-5%)

Blast-wave fit for CERN SPS data (NA49)

Blast-wave fit LHC

Works well for K and p

For pions, the deviation at low transverse momentum is currently the subject of intense investigations with no final conclusion yet.

At very high p_T the deviations are mainly due to jets (high p_T partonparton scattering).

Most recent results on blast-wave

A. Schmah, K. Reygers, X. Sun, A. Berdnikova, N. Gruenwald Publication in process

T und $\langle \beta \rangle$ for different centralities at RHIC and the LHC

Elliptic flow and higher flow harmonics

Azimuthal distribution of produced particles

Event plane reconstruction

Particles fly dominantly into the event (reaction) plane
Use the produced particles to calculate event plane angle:

$$\Psi_2 = \frac{1}{2} \left(tan^{-1} \frac{\sum_i w_i sin(2\phi_i)}{\sum_i w_i cos(2\phi_i)} \right)$$

• w_i: weights, usually the pT of the particle

Elliptic flow - Space-Time Evolution

Non-central heavy-ion collision

Hydrodynamic evolution

$$v_{2} = \frac{\left\langle p_{x}^{2} \right\rangle - \left\langle p_{y}^{2} \right\rangle}{\left\langle p_{x}^{2} \right\rangle + \left\langle p_{y}^{2} \right\rangle}$$

$$v_2 = < cos(2\phi - 2\Psi) >$$

 v_2 = elliptic flow

φ: particle azimuthal angleψ: event plane

- Anisotropic expansion can tell us a lot about the medium!
 - \rightarrow Kind of constituents
 - \rightarrow Interaction between the constituents
 - \rightarrow Viscosity

Elliptic flow - Data

- v_2 increases with p_T at low transverse momenta: direct correlation due to boosting
- At large p_T other effects like jets are getting important
- Difference at low p_T: mass dependence
- Difference at larger p_T: quark-number dependence
- •Other way of plotting: using m_T instead of p_T, almost cancelation of radial flow effects

QGP physics SS2021 | P. Braun-Munzinger, A. Schmah | 7. Space-time evolution of the QGP 26

Difference in elliptic flow between particles and antiparticles

•Observation at lower collision energies: particle and anti-particle elliptic flow isn't the same anymore! • Difference is most likely a result of baryon stopping. Global thermalization doesn't hold anymore on some scale.

10.1103/PhysRevLett.110.142301

Origin of odd flow components (v_3 , v_5 , ...)

- v₂ is related to the geometry of the overlap zone
- Higher moments result from fluctuations of the initial energy distribution

Müller, Jacak, http://dx.doi.org/10.1126/science.1215901

Hydrodynamic models: v_2/ϵ approx. constant

D meson *v*₂ in Pb-Pb: Heavy quarks seem to flow, too!

Given their large mass, it is not obvious that charm quarks take part in the collective expansion of the medium

Flow of heavy quarks

- State of the art blast-wave
- Simultaneous fit to spectra and elliptic flow data
- Good description of Y

10

 $\square D^0$

×Υ

¥Κ

η /s from comparison to data

