Homework 21.05.2021

- Download the code Scan_cross_section_vs_sqrt_s.C. The code contains the A) scanned data of σ_{tot} vs \sqrt{s} from pp collisions as shown in the lecture. Write a "brute force" minimization to perform a χ^2 fit to the data with the function given in the lecture: $\sigma_{tot} = Xs^{\epsilon} + Ys^{\epsilon'}$. The function with fixed parameters " ϵ " and " ε " is already given in the code.
- B) Perform a standard ROOT fit independent from the brute force method. An example is given in your ROOT/tutorials/fit/fithist.C.
- C) You will soon realize that the given parameter of ε is not optimal and both fit methods don't converge perfectly. Modify ε to get a better fit. Do that either manually or by adding ε as a fit parameter to any of the two methods.
- D) In many cases data from papers and books isn't directly available to you. A way to get the data is to scan it. For this, one can use the easy-to-use program "xyscan". xyscan software, available for Mac, Linux and Windows: https:// rhig.physics.yale.edu/~ullrich/software/xyscan/. Install the software, scan the data on the right hand side figure (two graphs).
- Fit the data with the function shown in the figure. Use a method of your choice E) for fitting, e.g. brute force, ROOT fit.

Hint A: "Brute force" minimization: Step through the parameters "X" and "Y" from the function in a certain range with some step size. For every step calculate the χ^2 . Store always the best parameters with the smallest χ^2 . For simplicity you can also ignore the error σ in that case.

