Georges Charpak	The multiwire proportional chamber	Further developments	

Invention and development of the multiwire proportional chamber

Hannah Klingenmeyer

University of Heidelberg

Seminar on Nobel Prizes in Particle Physics

November 27, 2015

Hannah Klingenmeyer

Seminar on Nobel Prizes in Particle Physics

Figure 1: Event display recorded by the JADE experiment of a 3-jet event

Introduction 0000	Georges Charpak	The multiwire proportional chamber	Further developments 00	
Outline				

Introduction

Georges Charpak

3 The multiwire proportional chamber

- Principle of operation
- Properties
- Applications

4 Further developments

Introduction	Georges Charpak	The multiwire proportional chamber	Further developments	
0000		000000000000000000000000000000000000000	00	

Particle detection before the multiwire proportional chamber

Particle detectors in the first half of the 20th century:

- cloud chambers, scintillation counters, photo multiplier tubes, flash tubes, proportional counters, Geiger-Müller tubes, ...
- optical and (later) electronic read-out of detectors
- in the 1950s and '60s: mainly bubble and spark chambers

Introduction	
0000	

Georges Charpak

The multiwire proportional chamber

Bubble chambers

Figure 2: Event display in a bubble chamber

- charged particle leaves trail of bubbles in boiling liquid
- "bubble track" is illuminated and photographed
- operation in magnetic field allows for momentum measurement
- → together with dE/dx measurement: particle identification

More on this subject in Thomas' talk in January!

Introduction	Georges Charpak	The multiwire proportional chamber	Further developments	
0000		000000000000000000000000000000000000000	00	

Spark chambers

- charged particle ionises gas
- high-voltage pulse (triggered by scintillation counters) applied to electrodes
 - \rightarrow spark discharge marks track of particle

Figure 3: Sketch of a spark chamber

Figure 4: Track of a muon in a spark chamber

Introduction	Georges Charpak	The multiwire proportional chamber	Further developments	
0000		000000000000000000000000000000000000000	00	

Problems and limitations

some examples for problems and limitations:

- bubble chamber:
 - · development and analysis of photographs is very time-consuming
 - · cannot be triggered
 - rate-limitated
- spark chamber:
 - · dead time of several ms to clear positive ions from detector volume
 - \rightarrow cannot be triggered more than about a hundred times per second

	Georges Charpak	The multiwire proportional chamber	Further developments	
0000		000000000000000000000000000000000000000	00	

Georges Charpak

- born 1924 in Poland, died 2010 in France
- PhD in Nuclear Physics at the Collège de France in 1954
- research position from 1948 to 1959 at the National Centre for Scientific Research (CNRS), then from 1959 to 1991 at CERN
 - \rightarrow became involved in high-energy particle physics
- published paper in 1968:
 "The use of multiwire proportional counters to select and localize charged particles"
- in the following years, > 200 papers, many on multiwire proportional chambers and their developments

Figure 5: Georges Charpak

Nobel prize in 1992 "for his invention and development of particle detectors, in particular the multiwire proportional chamber"

Hannah Klingenmeyer

Seminar on Nobel Prizes in Particle Physics

	Georges Charpak	The multiwire proportional chamber		
0000		••••••	00	

The multiwire proportional chamber (MWPC)

"A breakthrough in the technique for exploring the innermost parts of matter."

Press release of the Nobel Prize in Physics 1992

	Georges Charpak	The multiwire proportional chamber	Further developments	
		000000000000000000000000000000000000000		
D				

Purpose of a MWPC

General purpose of a multiwire proportional chamber:

- \bullet tracking of charged particle \rightarrow momentum measurement in magnetic field via position of passage
 - \rightarrow MWPC in B-field (collider experiments)
 - $\rightarrow~$ forward spectrometer:

Figure 6: Sketch of a forward spectrometer

• particle identification via measurement of energy loss (dE/dx)

	Georges Charpak	The multiwire proportional chamber	Further developments	
		000 0000 00000000000000000000000000000		
Principle of operation				
What is a I	MWPC?			

For a start, we take a look at the name:

Multiwire proportional chamber

	Georges Charpak	The multiwire proportional chamber	Further developments	
		00 00000 00000000000000000		
Principle of operation				
What is a M	IWPC?			

For a start, we take a look at the name:

	Georges Charpak	The multiwire proportional chamber	Further developments	
		000000000000000000000000000000000000000		
Principle of operation	n			
Proportion	nal counters			

- setup: thin wire at high potential in gas-filled tube
- charged particle ionises gas
 - \rightarrow electrons drift to wire
- avalanche formation close to wire due to high electric field ($\propto 1/R$)
- electrons continue to drift to wire, positive ions drift to walls
 - \rightarrow drift induces electric signal
- signal is proportional to the number of electrons collected

	Georges Charpak	The multiwire proportional chamber	Further developments	
		000000000000000000000000000000000000000		
Principle of operation	on			
Gas prope	erties			

• suitable counting gas: noble gases (e.g. Ar or Xe)

(can be operated at much lower fields than complex molecules)

- excited atoms (from avalanche formation) de-excite by emitting photons
 - \rightarrow can cause new avalanche shortly after first one
 - \rightarrow need a "quencher" to absorb photons before new avalanche can form
- suitable quenching gas: CO₂, CH₄, hydrocarbons, ...
- problem with quenchers: can deposit on anodes and cathodes
 - \rightarrow functionality is impaired
 - \rightarrow amount of quenching gas is kept low

	Georges Charpak	The multiwire proportional chamber	Further developments	
		000000000000000000000000000000000000000		
Principle of operation				
Construction	of a MWPC			

planar structure of proportional counters:

 parallel anode wires (usually gold-plated tungsten) stretched between two cathode planes

• cathodes can either be made of wire planes or conducting foil

typical values:

- $d \sim 2 5 \text{ mm}$
- $L\sim 5$ 10 mm
- $r_i \sim 20$ 25 μm
- $U_0 \sim 1$ 5 kV

	Georges Charpak	The multiwire proportional chamber	Further developments	
		00 000000 0000000000000000000000000000		
Principle of operation				
Signal forma	ation in a MV	VPC		

The signal formation on a **single wire** of a MWPC is essentially the same as in a proportional counter:

- · electrons from gas ionisation drift to anode wires
- ullet gas amplification close to wire o avalanche formation

only ends when electrons reach wire, or when space charge from positive ions "counters" electric field

 \bullet drift of electrons and mainly ions induces signal on both anode and cathodes \rightarrow position measurement possible

Characteristic of the MWPC: Every wire acts as an independent proportional counter!

Introduction

Georges Charpak

The multiwire proportional chamber

Further developments

Summary

Principle of operation

Electric field in a MWPC

Figure 9: Field configuration in a MWPC

electric field close to wire is not influenced by other wires \rightarrow every wire is an independent detector

	Georges Charpak	The multiwire proportional chamber	Further developments	
		00000000 00000 000000000		
Properties				
Resolution o	f a MWPC			

• signal on wire closest to avalanche is negative, signals on neighbouring wires are positive

 \rightarrow electronics read out only anode wire with negative signal

but: only information about closest wire

$$ightarrow$$
 resolution is limited to $\delta_{x}=rac{d}{\sqrt{12}}$

e.g. for d=2 mm: $\delta_x=577$ μ m

- only 1-dimensional and rather imprecise
 - \rightarrow also use cathode read-out

	Georges Charpak	The multiwire proportional chamber	Further developments	
		0000000 00000 00000000000		
Properties				
Resolution	n improvement			

- read-out not only on anode wires, but also on cathodes
- segementation of cathodes

 \rightarrow charge sharing allows for more precise measurement of centre of gravity

 resolution of y coordinate (along the wire) of ≥ 50 µm possible

Figure 10: Localisation of avalanches in a MWPC

	Georges Charpak	The multiwire proportional chamber	Further developments			
		0000000 00000 00000000000				
Properties						
limitations due to wire instability						

electrostatic repulsion:

- if two wires are put too close together, they will repel each other \rightarrow puts limit on *d* and wire length *l*
- to achieve stability, tension on wires must be larger than

$$T \ge \left(\frac{U_0 \cdot I}{d}\right)^2 \cdot 4\pi\epsilon_0 \left[\frac{1}{2\left(\frac{\pi L}{d} - \frac{2\pi r_i}{d}\right)}\right]$$

- example: l = 1 m, d = 2 mm, $r_i = 15$ µm, L = 10 mm and $U_0 = 5$ kV $\rightarrow T \approx 0.5$ N
 - \rightarrow need a stable framework!
 - \rightarrow tension on wires cannot be too much

	Georges Charpak	The multiwire proportional chamber	Further developments	
		00000000 00000 00000000000		
Properties				

gravitational sagging:

- horizontal wires will show a sag f under their weight
- for wire with mass *m*, length *l*, tension *T*: $f = \frac{mlg}{8T}$
- same example as before:
 f ≈ 34 µm → difference in gain

some of these problems can be solved by "straw chambers":

- cylindrical cathode (\varnothing 5 10 mm) for every anode wire
- \bullet spatial resolution \geq 30 μm possible
- problem of broken wires is minimised
- \bullet short drift lengths \rightarrow high-rate capability

Figure 11: Gravitational sagging

Figure 12: Sketch of a straw tube chamber

	Georges Charpak	The multiwire proportional chamber	
		0000000 0000 000000000000	
Properties			

Even small displacement will cause distortion of field lines:

 \rightarrow resolution worsens

Figure 13: Field lines in a MWPC with a displaced wire

	Georges Charpak	The multiwire proportional chamber	
		000000000000000000000000000000000000000	
Applications			
Applications	of MWPCs		

- \rightarrow widely used in particle physics experiments as track detectors
- \rightarrow contribution to some important discoveries in particle physics (charm quark, W and Z bosons, gluon,...)
- a few examples of different applications:
 - "normal" planar MWPCs
 - drift chambers
 - $\rightarrow~$ planar drift chambers
 - $\rightarrow~$ cylindrical drift chambers
 - time projection chambers
 - applications outside of particle physics

Introduction	Georges Charpak	The multiwire proportional chamber	Further developments	
Applications				
Drift chamb	ers			

- invented by A. Walenta, J. Heintze at the Physikalisches Institut in Heidelberg
- general idea: measure drift time of primary ionisation to anode wire \rightarrow improve spatial resolution perpendicular to wire

Figure 14: Principle of operation of a planar drift chamber

- electric field between wires very low in a MWPC
 - \rightarrow introduce so-called "field wires" at negative potential to achieve suitable electric field

	Georges Charpak	The multiwire proportional chamber	Further developments	
0000		000000000000000000000000000000000000000	00	
Applications				
Planar drift	chambers			

- problem: time measurement makes no statement about whether particle came from right or left side
 - \rightarrow use staggered double layer of drift chambers
- $\bullet\,$ achievable resolution: 200 μm for large chambers, 20 μm for small chambers

Figure 15: Resolving the left-right ambiguity

	Georges Charpak	The multiwire proportional chamber	Further developments	
		000000000000000000000000000000000000000		
Applications				
Cylindrica	al drift chambers			

operation in magnetic field \rightarrow transverse momentum from track curvature:

$$p[GeV/c] = 0.3B[T] \cdot \rho[m]$$

(ρ : bending radius)

- wires stretched parallel to beam axis (z direction) between two end plates
- alternating cylindrical layers of field and anode wires
 - \rightarrow coordinate in $r\varphi$
- determination of z coordinate via "stereo angle":

layer of anode wires tilted by small angle $\gamma \rightarrow \sigma_z = \sigma_{r\varphi}/{\it sin}\gamma$

Figure 16: View of a cylindrical drift chamber along the wires ($r\varphi$ plane)

	Georges Charpak	The multiwire proportional chamber	Further developments	
		000000000000000000000000000000000000000		
Applications				

example: the JADE experiment

- length: 2.4 m, diameter: 1.6 m, solid angle coverage: 90%
- gas mixture: 88.7% argon, 8.5% methane, 2.8% isobutane
- spatial resolution: $\sigma_{r\varphi} = 180 \ \mu m, \ \sigma_z = 16 \ mm$
- anode wire: \varnothing 20 $\mu m,$ field wires: \varnothing 100 μm
- in total 1536 anode wires (plus field wires)
 - \rightarrow pull at end plates with total force of 1.2 t!
- built at the Physikalisches Institut in Heidelberg by Heintze, Heuer, ...
 - \rightarrow exhibited in front of the Joachim-Heintze lecture hall, INF 308

Figure 17: The JADE drift chamber

	Georges Charpak	The multiwire proportional chamber	Further developments	Summary
		000000000000000000000000000000000000000		
Applications				

Time Projection Chambers (TPCs)

Figure 18: The ALICE Time Projection Chamber

	Georges Charpak	The multiwire proportional chamber	
		000000000000000000000000000000000000000	
Applications			
TPC ope	ration		

- gas-filled cylinder with central electrode
 - \rightarrow electron drift to endcaps in homogeneous electric field
- MWPCs at endcaps for read-out
- 3-dimensional measurement of track:
 - $ightarrow \, z$ coordinate from drift time
 - $\rightarrow x$ and y coordinates from MWPC
- particle identification via dE/dx from charge measurement

Figure 19: Working principle of a TPC

	Georges Charpak	The multiwire proportional chamber	Further developments	
		000000000000000000000000000000000000000		
Applications				

problem: ions from MWPCs have long drift path back to electrode

- \rightarrow deterioration of electric field due to space charge effects
- \rightarrow use "gating grid":

Figure 20: Gating grid in the ALEPH TPC

- gate is open for electron drift, closes after maximum drift time
 - \rightarrow ions from amplification region are collected on grid
- but: limitation in rate (no new event can be detected when grid is closed)

	Georges Charpak	The multiwire proportional chamber	Further developments	
		00000000000000000000000000000		
Applications				
Applicatic	ons outside of F	Particle Physics		

MWPC offered new opportunities for imaging ionizing radiation

- \rightarrow main applications in X-ray and $\gamma\text{-ray}$ imaging:
 - X-ray crystallography using MWPC as detector
 - \rightarrow replaced X-ray film
 - \rightarrow allowed for example study of protein structures
 - low energy neutron imaging
 - \rightarrow structures in molecular biology
 - positron cameras for γ -ray detection
 - X-ray of human body with decreased doses

Georges Charpak	The multiwire proportional chamber	Further developments	
		•0	

Replacements for MWPCs

- construction of MWPCs not easy (high geometric precision, stability,...)
- wires age, can be destroyed by discharges
 - \rightarrow go away from wire detectors
- possible replacements: microstrip detectors
 - wires are replaced by strips
 - all MWPC dimensions reduced by a factor 10
 - \rightarrow only short ion drift, high rate capability, good resolution
 - but: discharges destroy anode structure
 - \rightarrow did not work out
- different design: Gas Electron Multipliers (GEMs)

Introduction 0000	Georges Charpak	The multiwire proportional chamber	Further developments	

GEMs

- thin, metal-coated foil with holes placed before anode read-out structure
- potential on metal films
 - \rightarrow gas amplification in holes
- electrons drift to anode (read-out), ions are (mostly) collected on GEM foils
- several layers of GEMs on top of each other
 - $\rightarrow~$ achieve substantial gain
 - $\rightarrow\,$ prevent backflow of ions more effectively

Figure 21: Electric field lines in a GEM detector

replacement of MWPCs by GEMs for the ALICE TPC in progress

Introduction 0000	Georges Charpak	The multiwire proportional chamber	Further developments 00	Summary
Summony				

- MWPC was a great advancement in particle detector physics
- successful applications in different forms
 - \rightarrow some particle discoveries possible due to MWPCs (charm quark, W/Z bosons,...)
 - \rightarrow some applications, like TPCs, are still used today
- however, wires are prone to aging, construction is difficult
 - \rightarrow movement to replace MWPC with "wireless" detectors
 - \rightarrow maybe GEMs are the next step? We'll probably see in a few years...

Thank you for your attention!

	Georges Charpak	The multiwire proportional chamber		Summary
0000		000000000000000000000000000000000000000	00	

Bibliography

- G. Charpak, R. Bouclier, T. Bressani, J. Favier and C. Zupancic, The use of multiwire proportional counters to select and localize charged particles, Nucl. Instr. Meth. 62 (1968) 262-268
- G. Charpak, D. Rahm and H. Steiner, Some developments in the operation of multiwire proportional chambers, Nucl. Instr. Meth. 80 (1970) 13-34
- [3] F. Sauli, Principles of operation of multiwire proportional and drift chambers, CERN 77-09 (1977)
- [4] G. Charpak, Applications of proportional chambers to some problems in medicine and biology, Nucl. Instr. Meth. 156 (1978) 1-17
- [5] G. Charpak and F. Sauli, Multiwire proportional chambers and drift chambers, Nucl. Instr. Meth. 162 (1979) 405-428
- [6] G. Charpak, Electronic imaging of ionizing radiation with limited avalanches in gases, Rev. Mod. Phys. 65(3) (1993) 591
- [7] Nobelprize.org, The Nobel Prize in Physics 1992, Nobel Media AB 2014, http://www.nobelprize.org/nobel_prizes/physics/laureates/1992/ as of 21 Nov 2015
- [8] C. Grupen, B. Shwartz, Particle Detectors, 2nd edition, Cambridge University Press, Cambridge (2008)
- [9] W. Blum, W. Riegler, L. Rolandi, Particle Detection with Drift Chambers, 2nd edition, Springer, Berlin/Heidelberg (2008)
- [10] J. Stachel, Detectors in Nuclear and Particle Physics, lecture series, Heidelberg (2015). Retrieved from http://www.physi.uni-heidelberg.de/-fschney/detektoren/detector_all.pdf as of 21 Nov 2015
- W. Farr et al., A drift chamber system for the detection of narrow particle jets from e⁺e⁻ reactions, Nucl. Instr. Meth. 156 (1978) 283-286
- [12] JADE collaboration, OPAL collaboration, P. Pfeifenschneider et al., QCD analyses and determinations of α_s in $e^+ e^-$ annihilation at energies between 35 GeV and 189 GeV, Eur. Phys. J. C17 (2000) 19-51
- CERN Photo Archive, The decay of a lambda particle in the 32 cm hydrogen bubble chamber, CERN-EX-11465 (1960), https://cds.cern.ch/record/39474
- [14] CERN Photo Archive, The ALICE Time Projection Chamber: journey from building 2252 to the ALICE cavern, ALICE-PICT-TPC-2007-003 (2007), https://cds.cern.ch/record/1011033

Hannah Klingenmeyer

Seminar on Nobel Prizes in Particle Physics