# Statistical Methods in Particle Physics

**3. Uncertainties** 

Prof. Dr. Klaus Reygers (lectures) Dr. Sebastian Neubert (tutorials)

Heidelberg University WS 2017/18

#### **Statistical and Systematic Uncertainties**

### **Precision and Accuracy**



Ways to Quote Uncertainties

$$egin{aligned} t &= (34.5 \pm 0.7) \; 10^{-3} \; \mathrm{s} \ t &= 34.5 \; 10^{-3} \; \mathrm{s} \pm 2 \,\% \ x &= 10.3^{+0.7}_{-0.3} \ m_e &= (0.510 \; 999 \, 06 \pm 0.000 \, 000 \, 15) \; \mathrm{MeV}/c^2 \ m_e &= 0.510 \; 999 \, 06 \; (15) \; \mathrm{MeV}/c^2 \ m_e &= 9.109 \; 389 \; 7 \, 10^{-31} \, \mathrm{kg} \; \pm 0.3 \, ppm \end{aligned}$$

An uncertainty  $\sigma$  represents some kind of probability distribution (often a Gaussian, if not stated otherwise)

If no further information is given the interval  $x \pm \sigma$  corresponds to a a probability of 68% ("1 $\sigma$  errors")

# Statistical and Systematic Uncertainties

$$x = 2.34 \pm 0.05 \, (\text{stat.}) \pm 0.03 \, (\text{syst.})$$

quoting stat. and syst. uncertainty separately gives us an idea whether taking more data would be helpful

#### Statistical or random uncertainties

- Uncertainties that can be reliably estimated by repeating measurements
- They follow a known distribution like a Poisson rate or are determined empirically from the distribution of an unbiased, sufficiently large sample.
- Relative uncertainty reduces as  $1/\sqrt{N}$  where N is the sample size

#### Systematic uncertainties

- Cannot be calculated solely from sampling fluctuations
- In most cases don't reduce as  $1/\sqrt{N}$  (but often also become smaller with larger N)
- Difficult to determine, in general less well known than the statistical uncertainty
- Systematic uncertainties ≠ mistakes
   (a bug in your computer code is not a systematic uncertainty)

### Statistical Uncertainties: Examples

#### Radioactive decays (→ Poisson distribution)

- You measure N = 150 decays.
- The result is reports as  $N \pm \sqrt{N} \approx 150 \pm 12$

#### Efficiency of a detector ( $\rightarrow$ Binomial distribution)

- From  $N_0 = 60$  particles which traverse a detector, 45 are measured
- $\varepsilon = N/N_0 = 0.75$

$$\sigma_N^2 = N_0 \varepsilon (1 - \varepsilon) \quad \rightsquigarrow \quad \sigma_\varepsilon = \sqrt{\frac{\varepsilon (1 - \varepsilon)}{N_0}} = \sqrt{\frac{0.75 \cdot 0.25}{60}} = 0.06$$

# Systematic Uncertainties: Examples

- Calibration uncertainties of the measurement apparatus
  - E.g., energy scale uncertainty of a calorimeter
- Uncertainty of the detector resolution
- Detector acceptance
- Limited knowledge about background processes
- Uncertainties of auxiliary quantities
  - E.g. reference branching ratios uses as input
  - Uncertainty of theoretical quantities

A large fraction of the work in a particle physics analyses is estimating systematic uncertainties!

# How to Deal with Systematic Uncertainties?

#### Top-Down Approach

- Think about all possible sources of potential systematics
- Requires experience

#### Bottom-Up Approach

- Try to find systematic uncertainties not considered in top-down approach
- Internal cross checks
- Split data into independent subsets
- Compare independent analyses if possible
- Cut variation:
  - helps to identify systematics uncertainties
  - but reasons for possible differences should be understood
  - often difficult to separate statistical fluctuations from real systematic effects

# Speed of Light vs. Year of Publication



Klein JR, Roodman A. 2005. Annu. Rev. Nucl. Part. Sci. 55:141–63

# Experimenter's Bias?

Klein JR, Roodman, A. 2005, Annu. Rev. Nucl. Part. Sci. 55:141–63

#### Do researches unconsciously work toward a certain value?



#### Possible bias:

the investigator searches for the source or sources of such errors, and continues to search until he gets a result close to the accepted value.

Then he/she stops!

# **Blind Analyses**

Klein JR, Roodman, A. 2005, Annu. Rev. Nucl. Part. Sci. 55:141–63

Avoid experimenter's bias by hiding certain aspects of the data.

Things that can be hidden in the analysis:

- The signal events, when the signal occurs in a well-defined region of the experiment's phase space.
- The result, when the numerical answer can be separated from all other aspects of the analysis.
- The number of events in the data set, when the answer relies directly upon their count.
- A fraction of the entire data set.

Example: GERDA experiment

- search for neutrinoless double beta decay
- Signal: sharp peak
- Background model fixed prior to unblinding of signal region



# Combination of Systematic Uncertainties

In most cases one tries to find independent sources of systematic uncertainties. These independent uncertainties are therefore added in quadrature:

$$\sigma_{\rm tot}^2 = \sigma_1^2 + \sigma_2^2 + \ldots + \sigma_n^2$$

Often a few source dominate the systematic uncertainty

→ No need to work to hard on correctly estimating the small uncertainties

# Example: Neutral Pions Yields from Converted Photons in ALICE



 $\pi^0 \rightarrow \gamma + \gamma$ ,  $\gamma + \text{material} \rightarrow e^+ + e^-$ 

5.0 GeV/c

9.0

2.6

1.4

0.9

3.6

1.8

10.3

In this measurement the material budget uncertainty dominates the systematic uncertainty

### Describing Correlated Systematic Uncertainties (I)

Consider two measurement  $x_1$  and  $x_2$  with with individual random uncertainties  $\sigma_{1,r}$  and  $\sigma_{2,r}$  and a common systematic uncertainty  $\sigma_s$ :

$$egin{aligned} & x_i = x_{ ext{true}} + \Delta x_{i, ext{r}} + \Delta x_{ ext{s}} \ & \langle (\Delta x_{i, ext{r}})^2 
angle = 0, & \langle \Delta x_{ ext{s}} 
angle = 0, \ & \langle (\Delta x_{ ext{s}})^2 
angle = \sigma_{i, ext{r}}^2, & \langle (\Delta x_{ ext{s}})^2 
angle = \sigma_s^2 \end{aligned}$$

Variance:

$$\begin{split} V[x_i] &= \langle x_i^2 \rangle - \langle x_i \rangle^2 \\ &= \langle (x_{\text{true}} + \Delta x_{i,r} + \Delta x_s)^2 \rangle - \langle x_{\text{true}} + \Delta x_{i,r} + \Delta x_s \rangle^2 \\ &= \langle (\Delta x_{i,r} + \Delta x_s)^2 \rangle \\ &= \sigma_{i,r}^2 + \sigma_s^2 \end{split}$$

Covariance:

 $\operatorname{cov}[x_1, x_2] = \langle x_1 x_2 \rangle - \langle x_1 \rangle \langle x_2 \rangle$ 

$$=\sigma_s^2$$

### Describing Correlated Systematic Uncertainties (II)

Covariance matrix for  $x_1$  and  $x_2$ :

$$V = \begin{pmatrix} \sigma_{1,r}^2 + \sigma_s^2 & \sigma_s^2 \\ \sigma_s^2 & \sigma_{2,r}^2 + \sigma_s^2 \end{pmatrix}$$

This also works when the uncertainties are quoted as relative uncertainties:

$$\sigma_{s} = \varepsilon x \qquad \rightsquigarrow \qquad V = \begin{pmatrix} \sigma_{1,r}^{2} + \varepsilon^{2} x_{1}^{2} & \varepsilon^{2} x_{1} x_{2} \\ \varepsilon^{2} x_{1} x_{2} & \sigma_{2,r}^{2} + \varepsilon^{2} x_{1}^{2} \end{pmatrix}$$

### Example:

# Transverse Momentum Spectrum of the Higgs-Boson



CMS 19.4 fb<sup>-1</sup> (8 TeV) p<sub>T</sub><sup>H</sup> [GeV] Correlation **[85,125] [125,165] [165,∞**] -0.1 -0.1 0.2 0.6 0.9 1.0 0.8 0.6 0.9 -0.2 -0.0 0.4 0.8 1.0 0.4 0.2 -0.3 0.2 0.8 1.0 0.8 0.6 0 [45,85] -0.2 0.5 1.0 0.8 0.4 0.2 -0.2 [15,45] -0.4 0.7 1.0 0.5 0.2 -0.0 -0.1 -0.6 [0,15] -0.8 -0.3 -0.2 1.0 0.7 -0.2 -0.1 -1 [0,15] [15,45] [45,85] [85,125] [125,165] [165,∞] p<sub>+</sub><sup>H</sup> [GeV]  $\rho_{i,j} = \frac{V_{i,j}}{\sigma_i \sigma_i},$ V = covariance matrix

#### Correlation matrix of the $p_T$ bins:

**Error Propagation** 

Linear Error Propagation: Sometimes Applicable ...



Function sufficiently linear within  $\pm \sigma$ : linear error propagation applicable

# Linear Error Propagation: Sometimes Not Applicable ...



#### In this situation linear error propagation is not applicable

### Linear Error Propagation

Consider a measurement of values  $x_i$  and their covariances:

$$\vec{x} = (x_1, x_2, ..., x_n)$$
  $V_{ij} = cov[x_i, x_j]$ 

Let y be a function of the  $x_i$ :  $y = f(\vec{x})$ 

What is the variance of y?

Approach: Taylor expansion of *y* around  $\vec{\mu}$  where  $\mu_i = E[x_i]$   $\setminus$ In practice we estimate  $\mu_i$ by measured value  $x_i$ 

$$V[y] \equiv \sigma_y^2 = E[y^2] - E[y]^2$$

### Linear Error Propagation Formula

Taylor expansion:
$$y(\vec{x}) \approx y(\vec{\mu}) + \sum_{i=1}^{n} \left[\frac{\partial y}{\partial x_i}\right]_{\vec{x}=\vec{\mu}} (x_i - \mu_i)$$
 $E[y]$  is easy: $E[y] \approx y(\vec{\mu})$  as $E[x_i - \mu_i] = 0$ 

 $E[y^2]: \quad E[y^2(\vec{x})] \approx y^2(\vec{\mu}) + 2y(\vec{\mu}) \sum_{i=1}^n \left| \frac{\partial y}{\partial x_i} \right|_{\vec{x} = \vec{\mu}} E[x_i - \mu_i]$  $+ E \left[ \left( \sum_{i=1}^{n} \left[ \frac{\partial y}{\partial x_i} \right]_{\vec{x} = \vec{\mu}} (x_i - \mu_i) \right) \left( \sum_{i=1}^{n} \left[ \frac{\partial y}{\partial x_j} \right]_{\vec{x} = \vec{\mu}} (x_j - \mu_j) \right) \right]$  $= y^{2}(\vec{\mu}) + \sum_{i=1}^{''} \left[ \frac{\partial y}{\partial x_{i}} \frac{\partial y}{\partial x_{j}} \right]_{\vec{x}=\vec{\mu}} V_{ij}$  $\sigma_y^2 = \sum_{i, j=1}^{n} \left[ \frac{\partial y}{\partial x_i} \frac{\partial y}{\partial x_j} \right]_{\vec{x} = \vec{n}} V_{ij}$ 

Thus:

#### Matrix Notation

Let vector A be given by 
$$\vec{A} = \vec{\nabla}y$$
, i.e.,  $A_j = \left(\frac{\partial y}{\partial x_j}\right)_{\vec{x} = \vec{\mu}}$ 

Then:

$$\sigma_y^2 = \sum_{i,j=1}^n \left[ \frac{\partial y}{\partial x_i} \frac{\partial y}{\partial x_j} \right]_{\vec{x} = \vec{\mu}} V_{ij} = A^T V A$$

Example:

$$\frac{x_1}{x_2}, \quad A = \begin{pmatrix} 1/x_2 \\ -x_1/x_2^2 \end{pmatrix}$$

y =

$$\sigma_y^2 = \left(\frac{1}{x_2}, -\frac{x_1}{x_2^2}\right) \begin{pmatrix} \sigma_1^2 & \operatorname{cov}[x_1, x_2] \\ \operatorname{cov}[x_1, x_2] & \sigma_2^2 \end{pmatrix} \begin{pmatrix} \frac{1}{x_2} \\ -\frac{x_1}{x_2^2} \end{pmatrix}$$
$$= \left(\frac{1}{x_2}, -\frac{x_1}{x_2^2}\right) \begin{pmatrix} \frac{\sigma_1^2}{x_2} - \frac{x_1}{x_2^2} \operatorname{cov}[x_1, x_2] \\ \frac{1}{x_2} \operatorname{cov}[x_1, x_2] - \frac{x_1}{x_2^2} \sigma_2^2 \end{pmatrix} = \frac{1}{x_2^2} \sigma_1^2 + \frac{x_1^2}{x_2^4} \sigma_2^2 - 2\frac{x_1}{x_2^3} \operatorname{cov}[x_1, x_2]$$

$$\rightarrow \quad \frac{\sigma_y^2}{y^2} = \frac{\sigma_1^2}{x_1^2} + \frac{\sigma_2^2}{x_2^2} - 2\frac{\operatorname{cov}[x_1, x_2]}{x_1 x_2} = \frac{\sigma_y^2}{y^2} = \frac{\sigma_1^2}{x_1^2} + \frac{\sigma_2^2}{x_2^2} - 2\frac{\rho\sigma_1\sigma_2}{x_1 x_2}$$

#### Linear Error Proportion: Examples

$$y = ax \quad \rightarrow \quad \sigma_y^2 = a^2 \sigma_x^2 \qquad \text{i.e. } \sigma_y = |a| \sigma_x$$
$$y = x^n \quad \rightarrow \quad \frac{\sigma_y^2}{y^2} = n^2 \frac{\sigma_x^2}{x^2} \qquad \text{i.e. } \frac{\sigma_y}{y} = |n| \frac{\sigma_x}{x}$$
$$y = x_1 + x_2 \quad \rightarrow \quad \sigma_y^2 = \sigma_1^2 + \sigma_2^2 + 2\text{cov}[x_1, x_2]$$
$$y = x_1 - x_2 \quad \rightarrow \quad \sigma_y^2 = \sigma_1^2 + \sigma_2^2 - 2\text{cov}[x_1, x_2]$$
$$y = x_1 x_2 \quad \rightarrow \quad \frac{\sigma_y^2}{y^2} = \frac{\sigma_1^2}{x_1^2} + \frac{\sigma_2^2}{x_2^2} + 2\frac{\text{cov}[x_1, x_2]}{x_1 x_2}$$

Sanity checks:

Average of fully correlated measurements:

Difference of fully correlated measurements:

$$y = \frac{1}{2}(x_1 + x_2), \ \sigma_1 = \sigma_2 \equiv \sigma, \ \rho = 1 \quad \rightsquigarrow \quad \sigma_y = \sigma$$

 $y = x_1 - x_2, \ \sigma_1 = \sigma_2 \equiv \sigma, \ \rho = 1$  $\rightsquigarrow \quad \sigma_v^2 = 2\sigma^2 - 2\sigma^2 = 0$ 

# Concrete Example: Momentum Resolution in Tracking

Charged particle moving in constant magnetic field:

 $p_T/\text{GeV} = 0.3 \times B/\text{Tesla} \times R/\text{m}$ 

Measurements of space points yields Gaussian uncertainty for sagitta s which is related to  $p_T$  as

$$R=\frac{L^2}{8s}, \quad p_T=0.3B\frac{L^2}{8s}$$

Momentum resolution:

$$\frac{\sigma_{p_T}}{p_T} = \frac{\sigma_s}{s} = \frac{8p_T}{0.3BL^2}\sigma_s$$

#### Important features:

- Relative momentum uncertainty proportional to momentum
- Relative uncertainty prop. to uncertainty of coordinate measurement

Example: ATLAS nominal resolution

$$\left(\frac{\sigma_{p_T}}{p_T}\right)^2 = 0.001^2 + (0.0005p_T)^2$$

multiple scattering track uncertainty



# Linear Error Propagation for Uncorrelated Measurements

Special case: the  $x_i$  are uncorrelated, i.e.,  $V_{ij} = \delta_{ij}\sigma_i^2$ :

$$\sigma_y^2 = \sum_{i=1}^n \left[\frac{\partial y}{\partial x_i}\right]_{\vec{x}=\vec{\mu}}^2 \sigma_i^2$$

These formulas are exact only for linear functions.

Approximation breaks down if function is nonlinear over a region comparable in size to the  $\sigma_i$ .

Linear Error Propagation: Generalization from  $\mathbb{R}^n \rightarrow \mathbb{R}$  to  $\mathbb{R}^n \rightarrow \mathbb{R}^m$ 

Generalization: Consider set of *m* functions:

$$\vec{y}(\vec{x}) = (y_1(\vec{x}), y_2(\vec{x}), ..., y_m(\vec{x}))$$

Then:

$$\operatorname{cov}[y_k, y_l] \equiv U_{kl} \approx \sum_{i,j=1}^n \left[ \frac{\partial y_k}{\partial x_i} \frac{\partial y_l}{\partial x_j} \right]_{\vec{x} = \vec{\mu}} V_{ij}$$

In matrix notation:

$$U = AVA^{T} \qquad A_{ij} = \left[\frac{\partial y_i}{\partial x_j}\right]_{\vec{x} = \vec{\mu}}$$

### Reduction of the Standard Deviation for Repeated Independent Measurements

Consider the average of *n* independent observation  $x_i$ :

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Expectation values and variance of the measurements:

$$E[x_i] = \mu_i \qquad V[x_i] = \sigma^2$$

Standard deviation of the mean:

$$V[\bar{x}] = \frac{1}{n^2} \sum_{i=1}^n \sigma_i^2 = \frac{1}{n} \sigma^2 \qquad \rightarrow \qquad \sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$$

Standard deviation of the mean decreases as  $1/\sqrt{n}$ 

# Example: Photon Energy Measurements

The energy resolution of a  $\gamma$ -ray detector used to investigate a decaying nuclear isotope is 50 keV.

- If only one photon is detected the energy of the decay is known to 50 keV
- 100 collected decays: energy of the decay known to 5 keV
- To reach 1 keV one needs to observe 2500 decays

### Averaging Uncorrelated Measurements

Consider two uncorrelated measurements:  $x_1 \pm \sigma_1$ ,  $x_2 \pm \sigma_2$ Linear combination:

$$y = w_1 x_1 + w_2 x_2 \qquad \sigma_y^2 = w_1^2 \sigma_1^2 + w_2^2 \sigma_2^2$$

Now choose the weights such that  $\sigma_y^2$  is minimal (under the condition  $w_1 + w_2 = 1$ ):

$$\frac{\partial}{\partial w_i}\sigma_y^2 = 0 \quad \rightarrow \quad w_i = \frac{1/\sigma_i^2}{1/\sigma_1^2 + 1/\sigma_2^2}$$

And for the uncertainty of y we obtain (linear error propagation):

$$rac{1}{\sigma_y^2} = rac{1}{\sigma_1^2} + rac{1}{\sigma_2^2}$$

In general, for *n* uncorrelated measurements:

$$y = \sum_{i=1}^{n} w_i x_i, \qquad w_i = \frac{1/\sigma_i^2}{\sum_{j=1}^{n} 1/\sigma_j^2}, \qquad \frac{1}{\sigma_y^2} = \sum_{j=1}^{n} \frac{1}{\sigma_j^2}$$

### Example: Averaging Uncorrelated Measurements

 $p_T$  of a particle in three subsystems of the ATLAS detector:



| detector                        | <i>р</i> т (GeV) |
|---------------------------------|------------------|
| pixel detector                  | 20 ± 2           |
| semiconductor tracker           | 21 ± 1           |
| transition radiation<br>tracker | 22 ± 4           |

Weighted average:

 $(20.86\pm0.87)\,\mathrm{GeV}$ 



### Weighted Average from Bayesian Approach

Consider two measurements  $\mu_1$  and  $\mu_2$  with Gaussian uncertainties  $\sigma_1$  and  $\sigma_2$ . In a Bayesian approach the probability distribution for the true value x is given by

 $p(x) \propto L(\mu_1, \mu_2|x)\pi(x)$ 

Assuming a flat prior  $\pi(x) \equiv 1$  and independence of the two measurements one obtains

$$p(x) \propto L(\mu_1|x)L(\mu_2|x)$$
  
=  $G(\mu_1; x, \sigma_1)G(\mu_2; x, \sigma_2)$   
 $\propto \exp\left[-\frac{1}{2}\left(\frac{(x-\mu_1)^2}{\sigma_1^2} + \frac{(x-\mu_2)^2}{\sigma_2^2}\right)\right]$ 

The product of the two Gaussians gives a Gaussian with mean

$$\mu = w_1 \mu_1 + w_2 \mu_2$$
 where  $w_i = \frac{1/\sigma_i^2}{1/\sigma_1^2 + 1/\sigma_2^2}$ 

and standard deviation

$$\frac{1}{\sigma^2} = \frac{1}{\sigma_1^2} + \frac{1}{\sigma_2^2} \quad \Rightarrow \text{ same result as before}$$

# Monte Carlo Error Propagation

Example: Ratio of two Gaussian distributed quantities

 $x = 5 \pm 1$  $y = 5 \pm 1$ 

Approach: draw values for *x* and *y* many times and fill histogram with ratios

Standard linear error prop.:

 $R = 1 \pm 0.28$ 

Mean and rms of histogram:

 $R=1.05\pm0.33$ 



Rule of thumb: ratio of two Gaussians will be approximately Gaussian if fractional uncertainty is dominated by numerator, and denominator cannot be small compared to numerator