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Statistical and Systematic Uncertainties
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Ways to Quote Uncertainties

t = (34.54+0.7) 1073 s

t =34.510"3s+2%

z=10.3757

me = (0.510999 06 & 0.000 000 15) MeV /c?

me = 0.510999 06 (15) MeV /c?
me = 9.109389 7102 kg + 0.3 ppm

An uncertainty o represents some kind of probabillity distribution
(often a Gaussian, if not stated otherwise)

If no further information is given the interval x + ¢ corresponds to a
a probability of 68% ("10 errors")
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Statistical and Systematic Uncertainties

quoting stat. and syst. uncertainty

x = 2.34 +£0.05 (stat.) + 0.03 (SySt.) separately gives us an idea whether
taking more data would be helpful

Statistical or random uncertainties
» Uncertainties that can be reliably estimated by repeating measurements

» They follow a known distribution like a Poisson rate or are determined empirically from
the distribution of an unbiased, sufficiently large sample.

» Relative uncertainty reduces as 1/\/N where N is the sample size

Systematic uncertainties
» Cannot be calculated solely from sampling fluctuations
» In most cases don't reduce as 1/{/N (but often also become smaller with larger N)
» Difficult to determine, in general less well known than the statistical uncertainty

» Systematic uncertainties # mistakes
(a bug in your computer code is not a systematic uncertainty)
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Statistical Uncertainties: Examples

Radioactive decays (— Poisson distribution)
» You measure N = 150 decays.
» The result is reports as N + JN = 150 + 12

Efficiency of a detector (— Binomial distribution)

» From No = 60 particles which traverse a detector, 45 are measured
r £ = N/No = 0.75

1— 0.75-0.25
oy = Noe(l—¢) ~ 05_\/5( 8):\/ = 0.06

60
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Systematic Uncertainties: Examples

= Calibration uncertainties of the measurement apparatus

» E.g., energy scale uncertainty of a calorimeter
= Uncertainty of the detector resolution

= Detector acceptance
= |imited knowledge about background processes
= Uncertainties of auxiliary quantities

» E.g. reference branching ratios uses as input
» Uncertainty of theoretical quantities

A large fraction of the work in a particle physics analyses is estimating
systematic uncertainties!
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How to Deal with Systematic Uncertainties”?

Top-Down Approach

» Think about all possible sources of potential systematics

» Requires experience

Bottom-Up Approach
» Try to find systematic uncertainties not considered in top-down approach
» Internal cross checks
» Split data into independent subsets
» Compare independent analyses if possible
» Cut variation:
- helps to identify systematics uncertainties
- but reasons for possible differences should be understood

- often difficult to separate statistical fluctuations from real systematic effects
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Speed of Light vs. Year of Publication
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Klein JR, Roodman A. 2005.
Annu. Rev. Nucl. Part. Sci. 55:141-63
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3- D) Klein JR, Roodman, A. 2005,
1aS ¢ Annu. Rev. Nucl. Part. Sci. 55:141-63

—Xperimenter’s

Do researches unconsciously work toward a certain value?

@ EI ““.I | | | | | | | | Eu (-\]:)\ 1116 :_I 1 | | I | | | | | | | | | | | l__
© 1200 1 = : { :
= — i > 1115.8 —
.4: B ‘\‘ ] & D]
S 1100H © . : E
FER: I : : E
£ 1000} f : - g E
= - RN i - .
D o N A Rt - < - .
= 9002, §""56~~..§ PQy-O-n 00 1115 :_" B
- . 1114.8 -
800 [~ | ~ - ]

) | L L L L L L | 4 11146 T T T T

1960 1980 2000 1970 1980 1990

Year Year

Possible bias:

the investigator searches for the source or sources of such errors, and continues to
search until he gets a result close to the accepted value.

Then he/she stops!
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Blind Analyses

Avoid experimenter’s bias by

Klein JR, Roodman, A. 2005,

Annu. Rev. Nucl. Part. Sci. 55:141-63

niding certain aspects of the data.

Things that can be hidden in the analysis:

= [he signal events, when the signal occurs in a well-defined region of the

experiment’s phase space.

= [he result, when the numerical answer can be separated from all other

aspects of the analysis.

= [he number of events in the data set, when the answer relies directly upon

their count.

m A fraction of the entire data

Example: GERDA experiment

» search for neutrinoless double
beta decay

» Signal: sharp peak

» Background model fixed prior to
unblinding of signal region

set.

] wio PSD Qx5 [ ]
W wPSD blinded window

counts/keV

lllllllllllllll

: : energy (kev
— NOo evidence for a signal oy kev)
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Combination of Systematic Uncertainties

In Most cases one tries to find independent sources of systematic
uncertainties. These independent uncertainties are therefore added in

quadrature:
2 2 D 2
Ot — 01 T 05+ ... + 0},

Often a few source dominate the systematic uncertainty
— No need to work to hard on correctly estimating the small uncertainties
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—xXample:
Neutral Pions Yields from Converted Photons in ALIC

0 = v+, v + material — e + e~
PCM
PP
1.1 GeV/c 5.0GeV/c
Material budget 9.0 9.0
Yield extraction 0.6 2.6
e’ /e~ identification 0.7 1.4
Photon identification (x2(y)) 2.4 0.9
Pile-up correction 1.8 1.8
Total 9.5 10.3

In this measurement the material budget uncertainty dominates the
systematic uncertainty
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Describing Correlated Systematic Uncertainties (l)

Consider two measurement x1 and x2 with with individual random uncertainties
O1r and o2, and a common systematic uncertainty Os:

(Ax; ) =0, (Axs) =0,
(Axir)?) = 0f, ((BX)?) = 03

I,r S

Xi = Xtrue T AXi,r + AXs

Variance: V(x| = (x?) — (x;)?

/

<(Xtrue =+ AX/ r =+ AXS)2> <Xtrue =+ AXi,r =+ AXS>2

= ((Ax;, + Axg)?)
= (7,-21r -+ J?
Covariance: COV[X1, X2] — <X1X2> — <X1><X2>
— 0‘2
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Describing Correlated Systematic Uncertainties (l)

Covariance matrix for x1 and xo:

(Rt L)

o; 03,10,
This also works when the uncertainties are quoted as relative uncertainties:

O'% r -+ €2X12 €2X1X2
O — &EX M \/: ) 2 2.9
£°X1X2 05, T E°X]
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—Xample:
Transverse Momentum Spectrum of the Higgs-Boson

CMS 19.4 fb™ (8 TeV) Correlation matrix of the pr bins:
;‘ 11 | L LI LI | LI | 11 | LI | LI | 11 | LI I_
() —+— Data | 1
% - Statistical uncertainty . — CMS 19.4 fb (8 TeV) -
o Systematic uncertainty i %_) 8.1 O
T - . (o & 01 0.8 ®©
-8' 0.8 % B Model dependence — I-—- .‘:.—_ ) o
E % < 7% ggH (POWHEGV2+JHUGen) + XH | o Bl 0.6 g
S _ § \ i L -0.2
O % X N\ ggH (HRes) + XH il g o O
- § = 0.4
0.6 aln %% XH=VBF +VH ] =L
_ =L 03 0.2
i @
| — 0
3L
: g: -0.2 02
_ 5 -0.4
i e}
| = -0.6
m— g 02 03 02 -0 -0.8
I : I 7‘ : - | | | | | | | | | | | | | | | | | | |
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2 1k Z ... 2 §%§_
sob—o .l \: = L V' = covariance matrix
o 0 20 40 60 80 100 120 140 160 180 200 Pij = oo o
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arXiv:1606.01522v1
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Error Propagation
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Linear Error Propagation: Sometimes Applicable ...

y= f(x)

Function sufficiently linear within +0: linear error propagation applicable
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Linear

—rror

Propagation: Sometimes Not Applicable ...
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In this situation linear error propagation is not applicable
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Linear Error Propagation
Consider a measurement of values x;and their covariances:
X = (X1, X2, ..., Xp) Vii = cov|x;, xj]

Let y be a function of the xi;  y = f(X)

What is the variance of y?

Approach: Taylor expansion of y around 7 where p;i = E[xi]

\

In practice we estimate i
by measured value X;

Vly]l = o = Ely®] — ElyJ’
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Linear

Ely] is easy:

—rror Propagation Formula
Taylor expansion:  y(X) ~ y(ji) + 2; Bi ] iy (xi — pi)
Elyl]~y(i)  as Elxi—pi] =0
B2 Ely*(X)] = y*(i) +2y(u)z [ :Lg Elxi — pil

Thus:

"\ [0y oy
2 ..
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Matrix Notation

. - - _ O
LetvectorAbe givenby A=Vy, ie, A = (<>
0Xj ) o
" [ 9y Oy
.
Then: 0l = Vi = A'VA
4 Z Ox; OXj | o~ J
Ij= =
X1 ]./X2
: Yy = -, A=
Example - (_ Xy /X22)
1 2 1
> X1 o3 cov|[xi, xo] o
Oy =\ T2 2 X1
X2 X5 COVv [Xl , Xz] 05 x22
2
1 X1 —L — X cov|xy, xo] 1 X2 X1
— <_,__> 1X2 X5 - _20-%—|_ _]Z-l.o-g _2_3COV[X]_,X2]
X2 X5 o Cov[x1, xo| — 2303 X5 X5 X5
2 2
oy _0i 03 covpa,x] oy _of o3 poioo
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Linear Error Proportion: Examples

o 2 _ 2 2 : -
y=ax — o0,=ao; i.e. 0, = |alo
2 2
o % .o o
y:Xn —> —)2/:n2—)2< |.€. _y:’n‘_x
y X y X
y=x1+x — 0)2,:0%+0§—|—2cov[xl,xz]
y=X3—Xo — 0)2, = Uf -+ 0% — 2COV[X1,X2]
2 , 2
o o o COV|X1, X2
y=xxx — 5= 5+ 5 +2 | |
y X7 X4 X1X2
Sanity checks:
Average of fully correlat L = -
erage of fully correlated y==(x1+x),01=00=0, p=1
measurements: 2

Difference of fully correlated
measurements:

y=Xx1—Xp, 01=0=0, p=1

A 0§:202—202:O

O'y:O'
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Concrete Example: Momentum Resolution in Tracking

Charged particle moving in constant
magnetic field:

pr/GeV =0.3 x B/Tesla x R/m

Measurements of space points vields
Gaussian uncertainty for sagitta s
which is related to pr as

[2 [2
R=—, T+ =0.36—
3s P 3s
, o o 3pPT
Momentum resolution: Pr — 22 = =0
pT S 0.3BL
Important features: Example:
» Relative momentum uncertainty ATLAS nominal resolution
roportional to momentum ’
PIoP (U"T> = 0.0017 + (0.0005p7)°
» Relative uncertainty prop. to uncertainty pT I | | |
of coordinate measurement multiple scattering  track uncertainty
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_inear Error Propagation for Uncorrelated
Measurements

Special case: the x; are uncorrelated, i.e., Vi = §;07:

These formulas are exact only for linear functions.

Approximation breaks down if function is nonlinear over a region comparable

IN size to the a..
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Linear Error Propagation:
Generalization from R"—R to R"—Rm

Generalization: Consider set of m functions:

Y(X) = (y1(X), y2(X), ..., ym(X))

Then:

"L [0y O
covlyi, yi] = U = ) { a{(k (9));/} Vij
i OXjlz=p

ij=1

In matrix notation:
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Reduction of the Standard Deviation for Repeated
ndependent Measurements

Consider the average of n independent observation x;:

Expectation values and variance of the measurements:
Ex;]| = u; Vx| = o?

Standard deviation of the mean:

- ]- k 2 1 2 0}

Standard deviation of the mean decreases as 1/{n
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—xample:

Photon

—nergy Measurements

The energy resolution of a y-ray detector used to investigate a decaying

nuclear isotope is 50 keV.

» If only one photon is detected the energy of the decay is known to 50 keV

» 100 collected decays: energy of the decay known to 5 keV

» Toreach 1 keV one needs to observe 2500 decays
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Averaging Uncorrelated Measurements

Consider two uncorrelated measurements: X1 01, Xp £ 02

LiInear combination:

2 2 2 2 2
Yy = WiX1 + WaXp 0, = Wj01 + Wy05

Now choose the weights such that 6,2 is minimal (under the
condition w1 + wo = 1):

0 0 1/0?
O' — W, —
ow; ” 1/02 +1/03

And for the uncertainty of y we obtain (linear error propagation):

111
"o T T2 T "
o; 07 03

In general, for n uncorrelated measurements:
n

1/0? 1 L1
y=) WX, W =—=n 5 =) .3
,Z—; 2.j=11/0; Ty 5O
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—xample: Averaging Uncorrelated Measurements

pr1 of a particle in three subsystems of the ATLAS detector:

rR=1082 mm

TRT<

scrd

R=122.5mm
Pixels { R = 88.5 mm
R=50.5mm
R=0mmf

detector pr (GeV)
pixel detector 202

TRT semiconductor tracker |21 +1
transition radiation 22+ 4
tracker

Weighted average:

(20.86 T 0.87) GeV

20 GeV 21 GeV 22 GeV 1 1 1 —1/2
pr = 4 GleV2 1 GleV2 16 C1§eV2 Op, = | | S | .
e T Teavz T T6cav 4 GeV 1 GeV 16 GeV
— 20.86 GeV = 0.87 GeV
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Weighted Average from Bayesian Approach

Consider two measurements p1 and pp with Gaussian uncertainties o1 and o05. In a
Bayesian approach the probability distribution for the true value x is given by

p(x) oc L(pa, pa|x)m(x)

Assuming a flat prior m(x) = 1 and independence of the two measurements one

obtains

p(x) oc L(per]x)L(p2|x)
= G(p1;x,01)G(p2; x, 02)

N Y{CEh JNCE )

2 01 05

The product of the two Gaussians gives a Gaussian with mean

1/07

— here w; =
K Wil + Wolly W 17 1/0_% i 1/0_%

and standard deviation
1 1 1

2

o o7 05
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Monte Carlo Error Propagation

Example: ElllllllllIlllllllll]llltnhilesllllllldG,ﬂﬁlllIIIIIIE
Ratio of two Gaussi ™ E s
a I(.) OT tWO aUSSIan 600 /ndf 6735 ¢ 62 =
distributed quantities 500 £ Mon Lot osmesrar
400 ;_ Sigroa 0.2544 4+ 0.22645-02;
x=541 300 £ 3
200 F E
y = b+1 100 F ‘i
0 E W I I BT
0 2.5 3 3.5 4 4.5

Approach: draw values for x
and y many times and fil S ——
histogram with ratios ;; oo
10 & Cons:'ant 7065 4 9.852
' = Ivean 1.011 + 0.3303E-02 3
Standard linear error Prop.. ; Sigroa 02564k 02264802
R=1+0.28 10 ¢ E
Mean and rms of histogram: I ]
1 PO R U T T W T T T T W1 A T W W A O o 1 Y IH L |HH ||T|| ” E

R = 1.05+ 0.33 0 05 1 15 2 25 3 35 4 45

1 . x/y

Rule of thumb: ratio of two Gaussians will be approximately Gaussian if fractional uncertainty is
dominated by numerator, and denominator cannot be small compared to numerator
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