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Aims of this Course

■ Statistical inference: from data to knowledge 
‣ Should a believe a physics claim? 
‣ Develop intuition 
‣ Know pitfalls: avoid mistakes already made by others 

■ Understand statistical concepts 
‣ Ability to understand physics papers 
‣ Know methods / the standard statistical toolbox 

■ Use tools 
‣ Learn to use root 
‣ Get ready for your own data analysis

3
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How Knowledge is Created?
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Guess theory/model
- usually mathematical 
- self-consistent 
- simple explanations, few arbitrary  

parameters 
- testable predictions / hypotheses

Perform experiment
- reject / modify theory in case of 

disagreement with data 
- if theory requires too many 

adjustments it becomes 
unattractive  

The advance of scientific knowledge is an 
evolutionary process

Karl Popper  
(1902–1994)

source:	Wikipedia

Statistical methods are an important part of this process 
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Understanding Particle Physics Papers

5
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A Heavy Higgs Boson?

■ Two-photon invariant 
mass spectrum 

■ New particle with mass 
m ≈ 750 GeV? 

■ Local significance: 3.6σ

6

Peak disappeared with 
more data … [link]

Presentations by CMS and ATLAS, December 2015: 
https://indico.cern.ch/event/442432/

"750 GeV diphoton excess"

https://en.wikipedia.org/wiki/750_GeV_diphoton_excess#December_2015_data
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This is an Applied Course

■ We will use lots of examples from 
“real life” particle physics 

■ We will sometimes talk about 
implementation on a computer  

■ You should ask questions, discuss  

■ You will write code (C++), the 
tutorials will provide a step-by-step 
introduction to root
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https://root.cern.ch/
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Topics
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https://uebungen.physik.uni-heidelberg.de/vorlesung/20172/smipp



Statistical Methods in Particle Physics WS 2017/18 | K. Reygers | 1. Basic Concepts

Practical Information (I)
■ Slides of the lecture will be provided on the lecture web site 
‣ https://uebungen.physik.uni-heidelberg.de/vorlesung/20172/smipp 
‣ Goal: slides available a couple of days before the lecture 

■ Weekday/time of the lecture 
‣ Mondays, 14:15–15:45, KIP SR 3.404 
‣ There were requests to change the week, but this turned out to be difficult 

■ Tutorials 
‣ Mondays, 16:00–17:30 
‣ CIP pool of the Physikalisches Institut, not in KIP CIP pool  
‣ Information on CIP pool:  

http://www.physi.uni-heidelberg.de/Einrichtungen/CIP 
‣ Homework problems will be made available on lecture website 
‣ Solutions to be handed in by Wednesday, 12:00, of the following week 
‣ Groups of two students can (actually should!) hand in homework together 
‣ First homework sheet is available,  

to be handed in by Wednesday, October 25, 2017, 12:00
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https://uebungen.physik.uni-heidelberg.de/vorlesung/20172/smipp
http://www.physi.uni-heidelberg.de/Einrichtungen/CIP
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Practical Information (II)

■ Exam 
‣ There will be a written exam at the end of the semester 
‣ 60% of the points of the homework sheets required to be eligible to write the 

exam 
‣ Date to be fixed 

■ Successful participating requires to pass the written exam 
■ Final grade 
‣ 2/3 of the points of the homework assignments 
‣ 1/3 written exam
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Useful Reading Material

■ G. Cowan, Statistical Data Analysis 
■ L. Lista, Statistical Methods for Data Analysis in Particle Physics 
■ Behnke, Kroeninger, Schott, Schoerner-Sadenius: Data Analysis in High 

Energy Physics: A Practical Guide to Statistical Methods 
■ R. Barlow, Statistics: A Guide to the Use of Statistical Methods in the 

Physical Sciences 
■ Bohm, Zech, Introduction to Statistics and Data Analysis for Physicist 

[available online] 
■ Blobel, Lohrmann: Statistische Methoden der Datenanalyse (in German),  

[free ebook] 
■ Lyons: 

Statistics for Nuclear and Particle Physicists (Cambridge University Press) 
■ F. James, Statistical Methods in Experimental physics
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Books:

http://www-library.desy.de/preparch/books/vstatmp_engl.pdf
http://www.desy.de/~blobel/ebuch.html
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Further Material

■ Lot's of material from previous lectures by Oleg Brandt at Heidelberg 
University and others 
‣ Many thanks! 

■ Glen Cowan: http://www.pp.rhul.ac.uk/~cowan/stat_course.html 
■ Scott Oser: http://www.phas.ubc.ca/~oser/p509/ 
■ Particle Data Group reviews on Probability and Statistics [link] 
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http://www.pp.rhul.ac.uk/~cowan/stat_course.html
http://www.phas.ubc.ca/~oser/p509/
http://pdg.lbl.gov/2017/reviews/rpp2016-rev-statistics.pdf
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Sources of Uncertainty

■ Underlying theory (quantum mechanics) is probabilistic 
‣ true randomness 

■ Limited knowledge about the measurement process 
‣ present even without quantum mechanics

13

We quantify uncertainty using probability
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Mathematical Definition of Probability
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Let A be an event. Then probability is a number obeying  
three conditions, the Kolmogorov axioms: 

1. P(A) ≥ 0 
2. P(S) = 1, where S is the set of all A, the sample space 
3. P(A ∪ B) = P(A) + P(B) for any A, B which are exclusive, i.e., A ∩ B = 0 

From these axioms further properties can be derived, e.g.: 

P(Ā) = 1 – P(A) 
P(∅) = 0 
if A ⊂ B then P(A) ≤ P(B) 
P(A ∪ B) = P(A) + P(B) – P(A ∩ B) 

Kolmogorov, 1933

But what does P mean?
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Interpretations of Probability
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■ Classical definition 
‣ Assign equal probabilities based on symmetry of the problem,  

e.g., rolling dice: P(6) = 1/6 
‣ difficult to generalize 

■ Frequentist definition 
‣ Let A, B, … be outcomes of an repeatable experiment:

P(A) = lim
n!1

times outcome is A

n

■ Bayesian definition (subjective probability) 
‣ A, B, … are hypotheses (statements that are true or false) 

P(A) = degree of believe that A is true

All three definitions are consistent with Kolmogorov's axioms
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Criticisms of the Probability Interpretations
■ Criticisms of the frequency interpretation 
‣ n → ∞ can never be achieved in practice. When is n large enough? 
‣ We want to talk about the probability of events that are not repeatable 

- Example 1: P(it will rain tomorrow), but there is only one tomorrow 
- Example 2: P(Universe started with a Big Bang), but only one universe  

‣ P is not an intrinsic property of A, it depends on the how the ensemble of 
possible outcomes was constructed 
- Example: P(person I talk to is a physicist) depends on whether I am in a football 

stadium or at a scientific conference 

■ Criticisms of the subjective interpretation 
‣ “Subjective” estimates have no place in science 
‣ How to quantify the prior state of our knowledge upon which we base our 

probability estimate?

16

"Bayesians address the questions everyone is interested in by using 
assumptions that no one believes. Frequentist use impeccable logic to 
deal with an issue that is of no interest to anyone.” – Louis Lyons 
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Fun With Probabilities 
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Monty Hall problem ("Ziegenproblem") 
Suppose you're on a game show, and you're given the choice of three doors: 
Behind one door is a car; behind the others, goats. You pick a door, say No. 1, 
and the host, who knows what's behind the doors, opens another door, say 
No. 3, which has a goat. He then says to you, "Do you want to pick door 
No. 2?" Is it to your advantage to switch your choice?

Standard assumptions 
‣ The host must always open a door that was not picked by the contestant 
‣ The host must always open a door to reveal a goat and never the car. 
‣ The host must always offer the chance to switch between the originally 

chosen door and the remaining closed door.

https://en.wikipedia.org/wiki/Monty_Hall_problem

Under these assumptions you should switch your choice!
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Conditional Probability and Independent Events
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For two events A and B, the conditional probability is defined as 

P(A|B) = P(A \ B)

P(B)

An event A is independent of B if P(A|B) = P(A)

Events A and B independent () P(A \ B) = P(A) · P(B)

Example: rolling dice: P(n < 3|n even) =
P((n < 3) \ n even)

P(n even)
=

1/6

1/2
= 1/3
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Bayes' Theorem
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Definition of conditional probability:

P(A|B) = P(A \ B)

P(B)
P(B |A) = P(B \ A)

P(A)
and

But P(A \ B) = P(B \ A) , so 

P(A|B) = P(B |A)P(A)
P(B)

First published (posthumously) by the Reverend 
Thomas Bayes (1702−1761) 

First modern formulation by Pierre-Simon Laplace 
in 1812

[doubtful whether the  
portrait actually shows Bayes]
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Example of Using Bayes' Theorem: 
Test for a Rare Disease
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Base probability (for anyone) to have a disease D:

Consider a test for the disease: result is positive or negative (+ or –):

P(+|D) = 0.98

P(�|D) = 0.02

P(+|no D) = 0.03

P(�|no D) = 0.97

Suppose your result is +. How worried should you be?

P(D|+) =
P(+|D)P(D)

P(+|D)P(D) + P(+|no D)P(no D)

=
0.98⇥ 0.001

0.98⇥ 0.001 + 0.03⇥ 0.999
= 0.032

Probability for you to have the disease is 3.2%, i.e., you're probably ok.

P(D) = 0.001

P(no D) = 0.999
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Bayes' Theorem: Degree of Believe in a Theory Given a 
Certain Set of Data

21

P(theory|data) = P(data|theory)P(theory)
P(data)

likelihood prior (before seeing  
the data, subjective)

posterior probability, 
i.e., after seeing the data normalization
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Bayesian Inference: Jeffreys' Prior
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How to model complete ignorance about the value of a parameter θ?  
‣ Uniform distribution in θ, exp θ, ln θ, 1/θ, …? 
‣ Example: Lifetime τ of a particle, uniform distribution in τ or particle's width Γ = 1/τ ?

Jeffreys' prior (non-informative prior) for a model            of the measurement:

⇡(~✓) /
q
I (~✓) I (~✓) = det

"*
@ ln L(~x |~✓)

@✓i

@ ln L(~x |~✓)
@✓j

+#

determinant of the Fisher information matrix

invariant under re-parameterization expectation value evaluated by 
integrating over all possible results 

~x

PDF parameter Jeffreys' prior

Poissonian mean µ p(µ) ∝ 1/√µ

Gaussian mean  µ p(µ) ∝ 1

Examples:

L(~x |~✓)
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Jeffreys' Prior: Example
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L(x | µ) = e�(x�µ)2/2�2

p
2⇡�2

Gaussian distribution with mean parameter:

(� fixed)

Jeffreys' prior:

⇡(µ) /
p

I (µ) =

vuutE

"✓
d

dµ
ln L(x | µ)

◆2
#
=

vuutE

"✓
x � µ

�2

◆2
#

=

sZ +1

�1
L(x | µ)

✓
x � µ

�2

◆2

dx =

r
�2

�4
/ 1.

independent of μ
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Frequentist Inference
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Typical example: 
μ = true value, measurement process modeled by a Gaussian distribution:

Measurement ≙ drawing random number from G(x; μ, σ)

Measurement is reported as x ± σ.

This is a statement about the interval [x–σ, x+σ]. For a large number of 
hypothetically repeated experiments the interval would contain the true value in 
68% of the cases. In the frequentist approach, one cannot make a probabilistic 
statement about the true value (the true value is what it is).

In other words, the frequentist rather makes a statement about statements:  
The statement "μ lies in [x–σ, x+σ]" has a probability of 68% of being true.

Both the frequentist and the Bayesian approach require a statistical model of the 
measurement process.
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A Recurrent Theme: 
Frequentist vs. Bayesian 
Statistics

25

https://xkcd.com/1132/
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Describing Data
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Random Variables and Probability Density Functions

Random variable: 
‣ Variable whose possible values are numerical outcomes of a random 

phenomenon 
‣ Can be discrete or continuous

27

Probability density function (pdf) of a continuous variable:

P(x found in [x , x + dx ]) = f (x) dx

probability density 
function

Z 1

�1
f (x) dx = 1Normalization: "x must be somewhere"
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Histograms

Histogram: 
‣ representation of the frequencies of 

the numerical outcome of a random 
phenomenon 

 
 pdf = histogram for  
‣ infinite data sample 
‣ zero bin width 
‣ normalized to unit area

28

f (x) =
N(x)

n�x

n = total number of entries

�x = bin width
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Mean, Median, and Mode

Mean of a 
data sample:

29

4

The Centre of the Data: Mean, Median, & Mode

 Mean of a data set:

x=
1

N
∑
i=1

N

xi

Median:  the point with 
50% probability above 
& 50% below.  (If a tie, 
use an average of the 
tied values.)  Less 
sensitive to tails!

Mode: the most likely 
value

≡〈 x〉≡∫dx Px x

Mean of a PDF = 
expectation value 
of x

mode

median

mean

x̄ =
1

N

NX

i=1

xi

Mean of a pdf:

µ ⌘ hxi ⌘
Z

x P(x) dx

≡ expectation value E[x]

Median: 
point with 50% probability 
above and 50% probability 
below

Mode: 
the most likely value

"sample mean"
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Variance and Standard Deviation

Variance of a distribution:

30

V (x) =

Z
dx P(x)x2 � 2µ

Z
dx P(x)x + µ2

Z
dx P(x) = hx2i � µ2 = hx2i � hxi2

Variance of a data sample: V (x) =
1

N

X

i

(xi � x̄)2 = x2 � x̄2

This formula underestimates the variance of 
underlying distribution as it used the mean 
calculated from data!

Use this if you have to estimate the mean 
from data (unbiased estimator):

Use this if you know the true mean:

Standard deviation: � =
p

V (x)

expectation value

V (x) =
1

N

X

i

(xi � µ)2V̂ (x) =
1

N � 1

X

i

(xi � x̄)2

V (x) =

Z
dx P(x)(x � µ)2 = E [(x � µ)2]
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Deviation in Units of σ for a Gaussian
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- about 68% of events between –σ and +σ around mean 
- about 95% of events between –2σ and +2σ around mean
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Multivariate Distributions
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Outcome of experiment 
characterized by a vector (x1, …, xn)

G. Cowan  Statistical Data Analysis / Stat 1 21 

Multivariate distributions 

Outcome of experiment charac- 
terized by several values, e.g. an  
n-component vector, (x1, ... xn)  

joint pdf  

Normalization: 

P(A \ B) = f (x , y) dxdy

Z
...

Z
f (x1, ..., xn) dx1...dxn = 1

Normalization:

Sometimes we want only the pdf of 
one component:

fx(x) =

Z
f (x , y) dy "marginal pdf" 

= projection of joint pdf 
onto individual axes

joint pdf
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Marginal pdf = Projections

33

G. Cowan  Statistical Data Analysis / Stat 1 23 

Marginal pdf  (2) 

Marginal pdf ~ 
projection of joint pdf 
onto individual axes. 

x and y independent if

f (x , y) = fx(x) · fy (y)
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Covariance and Correlation

Covariance:

34

cov[x , y ] = E [(x � µx)(y � µy )]

Correlation coefficient (dimensionless): ⇢xy =
cov[x, y]

�x�y

x, y independent:

E [(x � µx)(y � µy )] =

Z
(x � µx)fx(x) dx

Z
(y � µy )fy (y) dy = 0

! cov[x , y ] = 0

N.B. converse not always true
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Correlation Coefficient
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cov[x , y ] = E [(x � µx)(y � µy )]
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Linear Combinations of Random Variables
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Consider two random variables with known covariance cov(x, y):

hx + yi = hxi+ hyi
haxi = ahxi

V [ax ] = a2V [x ]

V [x + y ] = V [x ] + V [y ] + 2cov(x , y)

V [x + y ] = E [(x + y � µx � µy )
2] = E [(x � µx + y � µy )

2]

= E [(x � µx)
2 + (y � µy )

2 + 2(x � µx)(y � µy )]

= E [(x � µx)
2] + E [(y � µy )

2] + 2E [(x � µx)(y � µy )]

= V [x ] + V [y ] + 2cov(x , y)

Check:



Statistical Methods in Particle Physics WS 2017/18 | K. Reygers | 1. Basic Concepts

Higher Moments

37

�1 =

*✓
x � hxi

�

◆3
+

Skewness:

symmetric distribution have 
skewness equal to zero 

�2 =

*✓
x � hxi

�

◆4
+

Curtosis:

�2 = �2 � 3

defined such that γ2 = 0 for the 
normal distribution
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Correlation ≠ Causation (1)

Example 1 ("reverse causality"): 
‣ The faster windmills are observed to rotate, the more wind is observed to be. 
‣ Therefore wind is caused by the rotation of windmills.

38

Examples of illogically inferring causation from correlation

Example 2 ("third factor C causes both A and B"): 
‣ Sleeping with one's shoes on is strongly correlated with waking up with a 

headache. 
‣ Therefore, sleeping with one's shoes on causes headache.

https://en.wikipedia.org/wiki/Correlation_does_not_imply_causation
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What Makes Nobel Prize Winners?
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F. Messerli, 2012, 
New England Journal 
of Medicine, 2012

Correlation coefficient: 
0.791 

Improved cognitive 
function associated 
with a regular intake of 
flavonoids??? 

Probably not … 
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Correlation ≠ Causation (2)

40


