
Kirchhoff-Insitut für Physik Winter semester 2013-14
Physikalisches Insitut KIP CIP Pool (1.401)

Exercises for Statistical Methods in Particle Physics
http://www.physi.uni-heidelberg.de/~nberger/teaching/ws13/statistics/statistics.php

Dr. Niklaus Berger (nberger@physi.uni-heidelberg.de)
Dr. Oleg Brandt (obrandt@kip.uni-heidelberg.de)

Exercise 3: Pseudo random number generators
28. October 2013

Hand-in solutions by 14:00, 4. November 2013

Please send your solutions to obrandt@kip.uni-heidelberg.de by 4.11.2013, 14:00. Make sure
that you use SMIPP:Exercise03 as subject line. Please put each macro into one separate .C
or .py file, which can easily be tested (i.e. executable via e.g. root -l my_code.C. Note that
for this to work, the main method of the macro has to be called with the same name as the
macro, i.e. void my_code(<some optional arguments>)). If plots are requested, please in-
clude print statements to produce pdf files in your code, and provide the plots separately. Please
add comments to your source code explaining the steps – try to think of somebody who is not
familiar with the course should be able to understand easily from your source code what each
part of it is there for. Test macros and programs before sending them off...

1 Monte Carlo Integration

Note that this question is Exercise 2.4 reposed, as the last exercise sheet was rather on the long
side. If you already handed in 2.4 last time but would like to polish your solution further, you
are invited to re-submit.

Calculate the following integral ∫ 100

0
cos(2πx)dx (1)

• analytically;

• numerically by the approximation:∫ b

a
f(x)dx ≈

N∑
i=1

f(xi)∆x (2)

where the function f is evaluated at N equidistant points with a constant step size ∆x =
(b− a)/N, xi = a+ ∆x · (i− 1/2). Graph how the error, i.e. the signed difference between
your calculation and the true result changes as you calculate f for an increasing number
of sampling points N = 1, 2, ..., 150. You can either (ab)use a histogram for this (with
SetBinContent() you can set bin contents to arbitrary values) or, more elegantly, use a
TGraph in conjunction with the draw option “AP”. Note that in the latter case a TGraph
will not display just by itself unless you draw it with the “A” option;

• by Monte Carlo integration using pseudo random numbers∫ b

a
f(x)dx ≈ b− a

N

N∑
j=1

f(xj) = (b− a) · 〈f〉 (3)

where the xj are random values in the interval [a, b], and 〈f〉 is the mean of the function
value over the interval [a, b]. The squared expected numerical error, i.e. variance of the
estimate of the integral is given by

σ2
i = (b− a)2 ·

σ2
N

N
,

where σ2
N is the sample variance of the function f for N sampling points

σ2
N =

1
N

N∑
j=1

(f(xj)− 〈f〉)2,

Again show the estimate (this time with its expected numerical error) as a function of
N = 1, 2, ... 150. How does the convergence compare to the numerical approximation
above? By the way, you can get 2π (in double precision) via TMath::TwoPi().

2 Generating non-uniformly distributed random number distri-
butions

Write a macro which generates a random number distribution according to f(x) = 1 +x2 in the
interval [1, 1]. As input, use the random numbers ri in the interval [0, 1] from a uniform random
number generator.
We use the decomposition method where f(x) is split into two parts: fa(x) = 1 and fb(x) = x2.
Thus, a certain fraction of the events will be generated according to fa and the remaining events
according to fb, i.e. in reality we generate two random number sequences which are combined to
obtain the final result. This fraction is determined by calculating the integral of both function
on the interval [1, 1]. Since ∫ 1

−1
fa(x)dx = 2

∫ 1

−1
fb(x)dx =

2
3
,

we have to generate in 3/4 of the cases a number according to fa(x), and in the remaining 1/4
of the cases according to fb(x).
First, a test value r1 is generated. If this r1 is less than 3/4, we generate a number according
to fa, and according to fb otherwise. For r1 ≥ 0.75, there are two ways to generate random
numbers distributed according fb:

• “Hit-and-miss” method:

1. Generate a pair of values rj and rk ∈ [0, 1].

2. Transform both random numbers to the considered sampling and result intervals,
respectively, i.e. in our case rj,trans ∈ [1, 1] and rk,trans ∈ [0, fb,max]. Note that fb,max =
1 in our case).

3. Now, if rk,trans ≤ fb(rj,trans), fill the histogram with rj,trans (“hit”). Otherwise, return
to step 1 (“miss”).

• Transformation method:

– We have random numbers rj distributed according to a uniform distribution g(r)
and want to generate random numbers xi according to a probability density function
(p.d.f.) f(x) in the interval [p, q];

– From the equation f(x)dx = g(r)dr we obtain the cumulative distribution function
(c.d.f.) F (X) and thus r = F (X) =

∫ x
−∞ f(x′)dx′, which we solve as x = F−1(r);

– If rj are uniformly distributed random numbers between F (p) and F (q), the xi are
following the p.d.f. f(x);

– The method works well if F (x) is analytical and can be easily inverted.

Note that here, xi = (3rj − 1)1/3, rj ∈ [0, 2
3].

Provide the source code and two histograms with random numbers distributed according to f(x)
using the two methods. Do you obtain consistent results?
(Hint: xy in C++: std::pow(x,y), from #include <cmath>.)

3 Generating random numbers according to the exponential dis-
tribution

Generate random numbers according to an exponential distribution e−x for x > 0. Take uni-
formly distributed random numbers in [0, 1] and apply the transformation method. Why would
it be computationally very expensive to apply the hit-and-miss method for e−x?
Provide the source code and show the histogram of your result.

	Monte Carlo Integration
	Generating non-uniformly distributed random number distributions
	Generating random numbers according to the exponential distribution

